Шрифт:
Интервал:
Закладка:
Что означают эти результаты? Возможны три ситуации. В первом, наихудшем случае даже при наличии уравнений для определения константы связи струны, а также уравнений для определения размерностей и точного вида пространства-времени (этим не может похвастаться ни одна теория), до сих пор не найденные точные уравнения могут допускать широкий спектр решений, что значительно ослабляет их предсказательную силу. Если это так, это будет крахом гипотезы о том, что теория струн способна объяснить свойства природы без необходимости экспериментального определения этих свойств и более или менее произвольной подгонки теории под эти свойства. Мы вернемся к анализу этого случая в главе 15. Во втором случае избыточная свобода выбора при решении приближенных уравнений теории струн может говорить об изъянах в нашей аргументации. Мы пытаемся использовать методы теории возмущений для определения значения самой константы связи струны. Но, как обсуждалось выше, методы теории возмущений имеют смысл лишь в случае, если константа связи меньше 1, и поэтому возможно, что при таких расчетах делается неоправданное предположение о самом результате, а именно, что этот результат будет меньше 1. Наша неудача вполне может объясняться неправильностью исходной предпосылки: в любой из пяти теорий струн константа связи может быть больше 1. Наконец, в третьем случае нежелательный произвол в решениях может быть просто следствием того, что мы используем приближенные, а не точные уравнения. Например, даже если константа связи в данной теории струн меньше 1, уравнения теории могут быть чувствительны к вкладам всех диаграмм. То есть учет небольших поправок, соответствующих всем многопетлевым диаграммам, может быть важным для сведения приближенного уравнения, допускающего множество решений, к точному уравнению с ограниченным числом решений.
К началу 1990-х гг. анализ двух последних возможностей убедил большинство теоретиков в том, что повсеместное использование теории возмущений является помехой на пути прогресса. По мнению подавляющего большинства ученых, следующее серьезное продвижение возможно лишь при использовании подхода, не скованного приближенными методами и, следовательно, далеко выходящего за рамки теории возмущений. Еще в 1994 г. разработка такого подхода казалась несбыточной мечтой. Однако иногда и такие мечты сбываются.
ДуальностьСотни занимающихся теорией струн теоретиков из многих стран мира ежегодно съезжаются на конференцию, посвященную обсуждению полученных за «отчетный» год результатов и оценке перспектив возможных направлений исследования. В зависимости от достигнутого в данном году прогресса обычно легко предугадать степень интереса и энтузиазм его участников. В середине 1980-х гг., в апогее первой революции в теории суперструн, на семинарах царила безграничная эйфория. Физиков окрыляла надежда на то, что скоро у них появится полное понимание теории струн, и она предстанет пред ними в качестве окончательной теории Вселенной. Сегодня это кажется наивным. Как выяснилось в следующие годы, для понимания многих глубоких и нетривиальных аспектов теории струн требуются длительные и напряженные исследования. После того как далеко не все сразу становилось на свои места, необоснованная первоначальная эйфория сменилась мертвым сезоном, а многие исследователи впали в уныние. Конференции по струнам, проводившиеся в конце 1980-х гг., отражали скрытое разочарование: физики представляли интересные результаты, но в атмосфере конференции не чувствовалось вдохновения. Некоторые даже предлагали отменить ежегодную конференцию. Однако в начале 1990-х годов ситуация стала исправляться. После ряда значительных прорывов (некоторые из них обсуждались в предыдущих главах) теория струн вновь стала набирать свою силу, и у многих исследователей опять появился энтузиазм и оптимизм. Тем не менее, трудно было предположить то, что произойдет на конференции по струнам, состоявшейся в марте 1995 г. в университете Южной Калифорнии.
Когда подошло время заявленного выступления Эдварда Виттена, он поднялся на кафедру и сделал доклад, который вызвал вторую революцию в теории суперструн. Вдохновленный результатами более ранних работ Даффа, Халла и Таунсенда, а также замечательными идеями Шварца, Ашока Сена и других теоретиков, Виттен объявил о новой стратегии выхода за рамки теории возмущений в теории струн. Главным элементом этой стратегии было понятие дуальности.
Физики используют это понятие для описания теоретических моделей, которые кажутся различными, но приводят к идентичным физическим следствиям. Есть «тривиальные» примеры дуальности, в которых совершенно одинаковые теории могут казаться различными лишь вследствие того, как эти теории представлены. Человек, понимающий только английский язык, не поймет, что речь идет о теории относительности, если объяснять ему эту теорию на китайском языке. Однако физик, свободно владеющий обоими языками, легко переведет ее на свой язык и установит эквивалентность двух теорий. Мы называем этот пример «тривиальным», поскольку с точки зрения физики при переводе не обнаруживается ничего нового. Для владеющих разными языками теоретиков получить новый результат в теории относительности одинаково сложно вне зависимости от того, на каком языке эта теория сформулирована. Переход от английского к китайскому и обратно не приводит к появлению новых физических результатов.
Нетривиальными являются те примеры дуальности, в которых различные описания одной и той же ситуации приводят к различным взаимодополняющим физическим выводам и математическим методам исследования. На самом деле, выше мы уже дважды сталкивались с такими примерами. В главе 10 обсуждалось, что теория струн во вселенной с циклическим измерением радиусом R может быть с тем же успехом описана в рамках теории во вселенной с циклическим измерением радиусом 1/R. Геометрически два варианта различны, но физические явления оказываются совершенно идентичными. Второй пример — зеркальная симметрия. Имеются два различных многообразия Калаби-Яу в дополнительных шести пространственных измерениях, но две вселенные, кажущиеся на первый взгляд совершенно разными, имеют одни и те же физические свойства. Существенным отличием от перевода с одного языка на другой является то, что эти дуальные описания могут привести к новым физическим результатам, например, к предсказаниям минимального размера циклического измерения или переходов с изменением топологии в теории струн.
В своей лекции на конференции «Струны-95» Виттен привел пример нового и фундаментального типа дуальности. Как кратко отмечено в начале этой главы, он предположил, что пять теорий струн, имеющих совершенно разную структуру, на самом деле являются лишь разными способами описания одного и того же физического мира. Работая с пятью теориями струн, мы просто смотрели в пять разных окон, обращенных в сторону одного теоретического фундамента.
До событий середины 1990-х гг. возможность существования дуальности такого масштаба была одной из лелеемых физиками идей, о которой можно было упоминать лишь шепотом — настолько она представлялась фантастической. Если две теории существенно расходятся в деталях формулировки, трудно вообразить, что эти теории могут быть просто двумя разными описаниями одной и той же физической реальности, лежащей в основе. Тем не менее, с развитием теории струн появляются все более убедительные свидетельства в пользу того, что все пять теорий струн являются дуальными. Кроме того, как будет пояснено ниже, из доводов Виттена следует, что в физике есть место и для шестой теории.
Эти результаты тесно переплетены с вопросами о применимости методов теории возмущений, обсуждавшихся в конце предыдущего пункта. Причина в том, что пять теорий струн сильно отличаются друг от друга, если в каждой из них предполагается наличие слабой связи, т.е. если константа связи меньше 1. Долгое время физики опирались на теорию возмущений, в рамках которой невозможна постановка вопроса о том, какими будут свойства любой из теорий, если окажется, что константа связи в этой теории больше 1, т.е. связь будет сильной. По утверждениям Виттена и других исследователей, сейчас можно ответить на этот важнейший вопрос. Их результаты убедительно свидетельствуют о том, что для сильной связи в каждой из теорий (включая шестую теорию, которую мы опишем ниже) есть дуальное описание в терминах слабой связи в другой теории, и наоборот.
Чтобы яснее понять смысл последнего утверждения, можно взять на вооружение следующую аналогию. Представим себе двух, мягко говоря, слегка чудаковатых индивидуумов. Один из них обожает лед, но, как ни странно, никогда не видел воды. Второй обожает воду, но, что не менее странно, никогда не видел льда. Однажды они встречаются и решают отправиться в поход по пустыне. В начале похода каждый из них изумлен снаряжением другого. Любитель льда пленен гладкой поверхностью прозрачной жидкости, которую принес с собой любитель воды, а любителя воды странным образом притягивают твердые кубики, принесенные любителем льда. Ни один из них и не подозревает о близком родстве между льдом и водой; для них эти субстанции совершенно различны. Но, продвигаясь по палящей жаре пустыни, они поражены тем, что лед начинает медленно превращаться в воду. А позже, дрожа от дикого холода пустынной ночи, они столь же сильно поражены тем, что жидкая вода начинает медленно превращаться в твердый лед. И тут до них доходит, что вода и лед, которые они считали совершенно разными веществами, тесно связаны между собой.