Читать интересную книгу Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории) - Брайан Грин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 61 62 63 64 65 66 67 68 69 ... 116

Выше при обсуждении движения струн основное внимание уделялось ненамотанным струнам. Струны, которые могут наматываться по циклической пространственной координате, имеют почти тот же набор свойств, что и рассмотренные выше струны. Их колебания также вносят существенный вклад в наблюдаемые величины. Главное отличие состоит в том, что у намотанной струны имеется минимальная масса, определяемая размером циклического измерения и числом оборотов струны вокруг него. Колебания струны дают добавку к этой минимальной массе.

Нетрудно понять причину существования минимальной массы. У намотанной струны есть ограничение на минимальную длину: это ограничение определяется длиной окружности циклического измерения и числом оборотов струны вокруг этого измерения. Минимальная длина струны определяет ее минимальную массу. Чем больше эта длина, тем больше и масса, потому что при увеличении длины струна «растет». Так как длина окружности пропорциональна радиусу, минимальные вклады топологической моды в массу струны пропорциональны радиусу окружности, на которую намотана струна. Учитывая соотношение Эйнштейна E = mc2, связывающее массу и энергию, можно, кроме того, утверждать, что сосредоточенная в намотанной струне энергия пропорциональна радиусу циклического измерения. (У ненамотанных струн тоже есть очень малая минимальная длина, иначе это были бы не струны, а точечные частицы. Аналогичные аргументы могли бы привести к заключению, что и ненамотанные струны имеют хоть и малую, но все же отличную от нуля массу. В определенном смысле это так, но квантово-механические поправки, рассмотренные в главе 6 (см. аналогию с телеигрой Верная цена), могут в точности сократить этот массовый вклад. Напомним, что именно так и происходит, когда в спектре ненамотанной струны возникают фотоны, гравитоны, а также другие безмассовые частицы или частицы с очень малой массой. Намотанные струны в этом отношении отличаются от ненамотанных.)

Каким образом существование топологических конфигураций струн влияет на геометрические свойства измерения, вокруг которого наматываются струны? Ответ, который был дан в 1984 г. японскими физиками Кейджи Киккавой и Масами Ямасаки, весьма примечателен и очень нетривиален.

Посмотрим, что происходит на последних катастрофических этапах Большого сжатия вселенной Садового шланга. Когда радиус циклического измерения достигает планковской длины и, в духе общей теории относительности, продолжает стягиваться до меньших размеров, в этот момент, согласно теории струн, необходим радикальный пересмотр модели происходящего. В теории струн утверждается, что в случае, когда радиус циклического измерения становится меньше планковской длины и продолжает уменьшаться, все физические процессы во вселенной Садового шланга происходят идентично физическим процессам в случае, когда радиус циклического измерения больше планковской длины и увеличивается! Это означает, что когда радиус циклического измерения пытается преодолеть рубеж планковской длины в сторону меньших размеров, эти попытки предотвращаются теорией струн, которая в этот момент меняет правила геометрии на противоположные. Теория струн говорит о том, что такую эволюцию можно переформулировать, т.е. переосмыслить, сказав, что когда циклическое измерение стянется до планковской длины, затем оно начнет расширяться. Законы геометрии на малых расстояниях переписываются в теории струн таким образом, что то, что ранее казалось полным космическим коллапсом, становится космическим расширением. Циклическое измерение может сжаться до планковской длины. Однако благодаря топологическим модам все попытки дальнейшего сжатия в действительности приведут к расширению. Рассмотрим, почему это происходит.

Спектр состояний струны[100]

Возможность новых конфигураций намотанной струны означает, что у энергии струны во вселенной Садового шланга есть два источника: колебательное движение и намотка (топологический вклад). Согласно Калуце и Клейну, каждый тип энергии зависит от геометрии шланга, т.е. радиуса свернутой циклической компоненты, но эта зависимость имеет ярко выраженный «струнный» характер, так как точечные частицы не могут наматываться вокруг измерений. Поэтому попытаемся сначала определить точную зависимость топологических и колебательных вкладов в энергию струны от размера циклического измерения. Для этого удобно разделить колебательные движения струны на две категории: однородные и обычные колебания. Обычные колебания неоднократно рассматривались выше (например, колебания, иллюстрация которых приведена на рис. 6.2). Однородные колебания соответствуют еще более простому движению, а именно поступательному движению струны как целого, когда она скользит из одного положения в другое без изменения формы. Все движения струны являются суперпозициями поступательных движений и осцилляции, т.е. суперпозициями однородных и обычных колебаний, однако сейчас нам удобнее рассматривать такое разделение движений струны. На самом деле обычные колебания играют второстепенную роль в наших рассуждениях, и поэтому их вклады будут учтены лишь после изложения сути наших доводов.

Отметим два существенных наблюдения. Во-первых, энергия однородных колебательных возбуждений струны обратно пропорциональна радиусу циклического измерения. Это является прямым следствием соотношения неопределенностей в квантовой механике. При меньших радиусах струна локализована в меньшем объеме, и поэтому энергия ее движения больше. Следовательно, при уменьшении радиуса циклического измерения энергия движения струны обязательно растет, что объясняет указанную обратно пропорциональную зависимость. Во-вторых, как выяснено в предыдущем разделе, топологические вклады в энергию прямо пропорциональны радиусу, а не обратно пропорциональны ему. Из этих двух наблюдений следует, что большие значения радиуса соответствуют большим значениям топологической энергии и малым значениям колебательной энергии, а малые значения радиуса соответствуют малым значениям топологической энергии и большим значениям колебательной энергии.

В итоге получается важнейший результат: всякому большому радиусу вселенной Садового шланга соответствует некий малый радиус, при котором топологические энергии струны, вычисленные для вселенной с большим радиусом, равны колебательным энергиям струны, вычисленным для вселенной с малым радиусом, а колебательные энергии струны, вычисленные для вселенной с большим радиусом, равны топологическим энергиям струны, вычисленным для вселенной с малым радиусом. Но поскольку физические свойства зависят лишь от полной энергии конфигурации струны, а не от того, как эта энергия распределена между колебательным и топологическим вкладами, нет никакого физического различия между этими геометрически различными состояниями вселенной Садового шланга. А поэтому, что может показаться достаточно странным, в теории струн нет никакой разницы между вселенной толстого Садового шланга и вселенной тонкого Садового шланга.

Все это можно назвать «космическим страхованием сделки», что, в определенной мере, аналогично действиям вкладчика небольшого капитала, столкнувшегося со следующей дилеммой. Предположим, он узнал, что судьба акций одной компании (например, производящей тренажеры) неразрывно связана с судьбой акций другой компании (например, производящей сердечные клапаны для шунтирования). Допустим, что по завершении сегодняшних торгов акции каждой компании стоили по одному доллару, и из авторитетного источника известно, что если акции одной компании пойдут вверх, то акции другой компании упадут вниз, и наоборот. Кроме того, этот абсолютно надежный источник (деятельность которого, однако, может быть не очень-то законной) утверждает, что при завершении завтрашних торгов цены на акции этих двух компаний гарантированно будут обратно пропорциональны друг другу. Например, если одни акции будут стоить $2, то другие — $1/2 (50 центов), а если одни будут стоить $10, то другие — $1/10 (10 центов), и т.д. Однако какие именно акции пойдут вверх, а какие упадут в цене, источник сказать не может. Как поступить в такой ситуации?

Что же, вкладчик немедленно инвестирует все свои капиталы на биржевой рынок, распределив их в равных долях между акциями двух компаний. Сделав несколько оценок, легко убедиться, что капитал не уменьшится вне зависимости от того, что произойдет на рынке завтра. В худшем случае капитал не изменится (если акции обеих компаний по завершении торгов будут стоить $1), но любое изменение стоимости акций по известной от источника схеме приведет к увеличению вклада. Например, если акции первой компании будут стоить $4, а акции второй компании будут стоить $1/4 (25 центов), то их суммарная стоимость будет равна $4,25 (за каждую пару акций) против $2 накануне торгов. Более того, с точки зрения чистой прибыли совершенно не важно, акции какой компании выросли в цене, а какой компании упали. Если вкладчика волнуют только деньги, два различных исхода неразличимы в финансовом отношении.

1 ... 61 62 63 64 65 66 67 68 69 ... 116
На этом сайте Вы можете читать книги онлайн бесплатно русская версия Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории) - Брайан Грин.

Оставить комментарий