Шрифт:
Интервал:
Закладка:
Наша интуиция питается жизненным опытом. Но этим роль опыта не ограничивается: он формирует опорный каркас, в рамках которого мы анализируем и интерпретируем полученную из окружающего мира информацию. Например, вряд ли вы будете сомневаться, что Маугли, воспитанный стаей диких волков, будет интерпретировать окружающую действительность совсем иначе, чем мы. Даже менее сильные различия, например, различия между людьми, воспитанными в существенно разных культурных традициях, подчеркивают ту роль, которую играет жизненный опыт в восприятии мира. Однако есть явления, воздействие которых испытывают все. И часто именно убеждения и ожидания, основанные на таком универсальном опыте, труднее всего поддаются определению и пересмотру. Простой, но глубокий пример состоит в следующем. Закрыв эту книгу и встав со стула, вы можете двигаться в трех независимых направлениях — т.е. в трех независимых пространственных измерениях. Каким бы путем вы не последовали, — независимо от того, насколько сложным он будет, — результат может быть описан как комбинация перемещений в трех направлениях: «влево-вправо», «вперед-назад» и «вверх-вниз». Каждый раз, когда вы делаете очередной шаг, вы неявно делаете три независимых выбора, определяющих ваше движение в этих трех измерениях.
Эквивалентное утверждение, с которым мы столкнулись, рассматривая специальную теорию относительности, заключается в том, что любая точка Вселенной может быть однозначно определена тремя параметрами, указывающими ее положение в этих трех пространственных измерениях. Например, вы можете описать адрес в городе, указав стрит[65] (положение в измерении «влево-вправо»), авеню (положение в измерении «вперед-назад») и этаж (положение в измерении «вверх-вниз»). Работы Эйнштейна показали нам, что время может рассматриваться как еще одно измерение (измерение «будущее-прошлое»), что увеличивает общее число измерений до четырех (три пространственных и одно временное). Вы определяете события во Вселенной, указывая, где и когда они произошли.
Эта особенность Вселенной кажется столь фундаментальной и естественной, что обычно даже не упоминается. Тем не менее, в 1919 г. малоизвестный польский математик Теодор Калуца из Кенигсбергского университета дерзнул бросить вызов очевидному — он предположил, что в действительности Вселенная может иметь не три измерения, число измерений может быть больше. Иногда предположения, звучащие бессмысленно, таковыми и являются. Иногда они потрясают основы физики. Хотя потребовалось некоторое время на то, чтобы предположение Калуцы получило общее признание, оно привело к революции в формулировке физических законов. Отзвуки этого провидческого прозрения мы слышим до сих пор.
Идея Калуцы и уточнение КлейнаПредположение о том, что наша Вселенная может иметь более трех пространственных измерений, может показаться бессмысленным, эксцентричным или мистическим. Однако в действительности оно является вполне реальным и тщательно обоснованным. Убедиться в этом будет проще, если на время оставить в покое Вселенную и рассмотреть более привычный объект, например длинный и тонкий Садовый шланг.
Представим, что несколько сотен метров Садового шланга протянуто поперек каньона, и мы наблюдаем его с расстояния, скажем, в километр, как показано на рис. 8.1а.
Рис. 8.1. а) Садовый шланг со значительного расстояния выглядит одномерным объектом. б) При увеличении становится видимым второе измерение — то, которое имеет форму окружности, охватывающей ось шланга.
С такого расстояния хорошо видна горизонтальная протяженность длинного развернутого шланга, однако, если только вы не обладаете орлиным зрением, вам будет трудно оценить его обхват. Наблюдая шланг с такого большого расстояния, вы можете подумать, что если бы на шланге жил муравей, у него было бы только одно измерение для прогулок: влево-вправо вдоль шланга. Если бы вас попросили указать, где этот муравей находится в какой-то момент времени, вам достаточно было бы указать только одно число: расстояние от муравья до левого (или правого) конца шланга. Основная идея этих рассуждений состоит в том, что с расстояния в километр длинный кусок Садового шланга выглядит одномерным объектом.
На самом деле известно, что у шланга есть обхват. Вам, быть может, трудно разглядеть это с расстояния в километр, но если вы вооружитесь биноклем, он увеличит изображение шланга, и вы сможете увидеть этот обхват непосредственно, как показано на рис. 8.1б. Рассматривая увеличенное изображение, вы увидите, что у маленького муравья, живущего на шланге, на самом деле есть два независимых направления для прогулок. Одно из них, как вы уже заметили, проходит влево-вправо по длине шланга, а второе — это измерение «по часовой стрелке — против часовой стрелки», расположенное по окружности шланга. Теперь вы понимаете, что для того, чтобы сказать, где ваш крошечный муравей находится в заданный момент, вы должны указать два числа: положение муравья вдоль длины шланга и его положение на окружности. Это отражает тот факт, что поверхность Садового шланга является двумерной.[66]
Эти два измерения явно различаются. Направление вдоль шланга является длинным, протяженным, и хорошо видимым. Направление, опоясывающее шланг, является коротким, «свернутым» и трудноразличимым. Для того чтобы узнать о существовании циклического измерения, приходится исследовать шланг с существенно большим разрешением.
Этот пример подчеркивает неочевидную и важную особенность пространственных измерений: они могут быть двух видов. Они могут быть просторными, протяженными и, вследствие этого, доступными непосредственному наблюдению, но они также могут быть маленькими, скрученными и гораздо менее поддающимися обнаружению. Конечно, в нашем примере не пришлось тратить слишком много усилий на то, чтобы обнаружить «свернутое» измерение, опоясывающее ось шланга. Вам было достаточно воспользоваться биноклем. Однако если вам придется иметь дело с очень тонким Садовым шлангом, имеющим обхват волоса или капилляра, обнаружить свернутое измерение будет не так-то просто.
В статье, которую Калуца отправил Эйнштейну в 1919 г., он высказал удивительное предположение. Калуца утверждал, что пространственная структура Вселенной может содержать больше измерений, чем три известных нам из жизненного опыта. Как мы вскоре увидим, мотивом для столь радикальной гипотезы было то, что она позволяла построить элегантный и мощный аппарат, объединяющий общую теорию относительности Эйнштейна и теорию электромагнитного поля Максвелла в единую и однородную концептуальную систему. Но как это предложение может согласовываться с тем очевидным фактом, что мы видим в точности три пространственных измерения?
Ответ, который в неявной форме содержится в работе Калуцы, и который позднее был выражен в явном виде и уточнен шведским математиком Оскаром Клейном в 1926 г., состоит в том, что структура пространства нашей Вселенной может содержать как протяженные, так и свернутые измерения. Это значит, что в нашей Вселенной есть измерения, которые являются просторными, протяженными и легко доступными для наблюдения, подобно длине Садового шланга. Однако, подобно циклическому измерению того же шланга, Вселенная может содержать и дополнительные пространственные измерения, которые туго скручены в ничтожно малой области — столь малой, что она не может быть обнаружена даже с помощью самого современного экспериментального оборудования.
Чтобы получить более ясное представление о сути этого замечательного предложения, вернемся на минуту к примеру с Садовым шлангом. Представим себе, что на шланге черной краской нарисовано с малым шагом большое количество охватывающих его окружностей. Издалека шланг по-прежнему выглядит тонкой одномерной линией. Но, взглянув на него в бинокль, вы обнаружите свернутое измерение; после окраски найти его будет еще легче, чем раньше. Оно будет выглядеть так, как показано на рис. 8.2. Ясно видно, что поверхность шланга является двумерной, с одним крупным и протяженным измерением, а другим небольшим и имеющим форму окружности.
Рис. 8.2. Поверхность Садового шланга является двумерной. Одно измерение(идущее вдоль горизонтальной оси шланга), отмеченное прямой стрелкой, является длинным и протяженным. Другое измерение (окружность шланга), отмеченное круговой стрелкой, является маленьким и свернутым.
Калуца и Клейн предположили, что аналогичную структуру имеет и наша Вселенная, только в ней имеется три обычных, протяженных измерения и одно маленькое, циклическое; таким образом, общее число пространственных измерений равно четырем. Нарисовать предмет в пространстве с таким числом измерений непросто, поэтому для большей наглядности мы ограничились случаем двух протяженных и одного маленького циклического измерения. Мы изобразили это на рис. 8.3, где структура пространства последовательно увеличивается примерно так же, как в случае поверхности Садового шланга.
- Неприятности с физикой: взлет теории струн, упадок науки и что за этим следует - Ли Смолин - Физика
- Ткань космоса: Пространство, время и текстура реальности - Брайан Грин - Физика
- Великий замысел - Стивен Хокинг - Физика
- Астробиология - Гавриил Тихов - Физика
- Теория физического вакуума в популярном изложении - Г. Шипов - Физика