Общая особенность всех сопряжённых систем — «растекание» электронной плотности р- и p-электронов (см. Сигма- и пи-связи) по всей сопряжённой системе — определяет их физические и химические свойства. Так, простые связи приобретают некоторую «двоесвязность», выражающуюся, в частности, в уменьшении их длины. Например, в бутадиене длина центральной С — С-связи 1,46 вместо обычной 1,54 . С. с. проявляется также, например, в УФ- и ИК-спектрах, дипольных моментах. Наиболее характерная химическая особенность сопряжённых систем — способность вступать в реакции не только с участием одной кратной связи, но и всей сопряжённой системы как единого целого. Примером может служить, например, присоединение к бутадиену хлористого водорода:
Количество образующихся продуктов 1,2-и 1,4-присоединения зависит от природы сопряжённой системы, от реагента и условий реакции. Сопряжение снижает внутреннюю энергию молекул и, следовательно, делает их более устойчивыми: величина энергии сопряжения колеблется между несколькими единицами и десятками ккал/моль (например, для бутадиена 3,6 ккал/моль, для бензола 35 ккал/моль, 1 ккал/моль =4,19 кдж/моль).
Истинное распределение электронной плотности в сопряжённых системах нельзя выразить простейшими структурными формулами. Их строение более точно передаётся наборами предельных структур (см. Мезомерия, Резонанса теория), формулами с пунктирными («полуторными») связями или с изогнутыми стрелками, указывающими направление сдвига электронов, например:
Для проявления С. с. необходимо, чтобы участвующие в нём электронные системы находились в одной плоскости. Если структура молекулы не допускает этого, то говорят о пространственных препятствиях сопряжению. Так, у транс-стильбена (а), по данным УФ-спектров, обнаруживается более сильное сопряжение, чем у цис-стильбена (б), у которого бензольные ядра не могут разместиться в одной плоскости с двойной связью:
Сопряжённые гиперболы
Сопряжённые гипе'рболы, две гиперболы, которые в одной и той же системе прямоугольных координат при одних и тех же значениях а и b определяются уравнениями:
и
С. г. имеют общие асимптоты и общий основной прямоугольник (см. рис.).
Рис. к ст. Сопряжённые гиперболы.
Сопряжённые диаметры
Сопряжённые диа'метры линии второго порядка, два диаметра, каждый из которых делит пополам хорды этой кривой, параллельные другому. С. д. играют важную роль в общей теории линий второго порядка. При параллельном проектировании эллипса в окружность его С. д. проектируются в пару взаимно перпендикулярных диаметров окружности.
Сопряжённые дифференциальные уравнения
Сопряжённые дифференциа'льные уравне'ния, понятие теории дифференциальных уравнений. Уравнением, сопряжённым с дифференциальным уравнением
, (1)
называется уравнение
, (2)
Соотношение сопряженности взаимно. Для С. д. у. имеет место тождество
,
где y (у, z) — билинейная форма относительно у, z и их производных до (n - 1)-го порядка включительно. Знание k интегралов сопряжённого уравнения позволяет понизить на k единиц порядок данного уравнения. Если
y1, у2,... уn (3)
— фундаментальная система решений уравнения (1), то фундаментальная система решений уравнения (2) даётся формулами
,
где D — определитель Вроньского (см. Вронскиан) системы (3). Если для уравнения (1) заданы краевые условия, то существуют сопряжённые с ними краевые условия для уравнения (2) такие, что уравнения (1) и (2) с соответствующими краевыми условиями определяют сопряжённые дифференциальные операторы (см. Сопряжённые операторы). Понятие сопряженности обобщается также на системы дифференциальных уравнений и на уравнения с частными производными.
Сопряжённые операторы
Сопряжённые опера'торы, понятие операторов теории. Два ограниченных линейных оператора Т и Т* в гильбертовом пространстве называются сопряжёнными, если для всех векторов х и у из Н справедливо соотношение (Tx, у) =(х, Т*у). Например, если
,
то оператору
сопряжён оператор
,
где — функция, комплексно сопряжённая с К (х, у). Если оператор Т не ограничен и его область определения Dm всюду плотна (см. Плотные и неплотные множества), то С. о. определяется на множестве тех векторов у, для которых можно найти такой вектор у*, что равенство (Tx, у) = (х, у*) справедливо для всех х Î Dm, при этом полагают Т*у = у*. Понятие сопряженности обобщается также на операторы в др. пространствах.
Сопряжённые реакции
Сопряжённые реа'кции, такие реакции химические, которые протекают только совместно и при наличии хотя бы одного общего реагента. Реакция (А + В ® продукты), индуцирующая (вызывающая) прохождение др. реакции, называется первичной, а индуцируемая ею, или сопряжённая ей (А + С ® продукты), — вторичной. Реагент А, участвующий в обеих реакциях, называется актором, реагент В, взаимодействие которого с А индуцирует вторичную реакцию, — индуктором, а реагент С — акцептором. Индукторы в С. р., в отличие от катализаторов (в каталитических реакциях), расходуются.
Примером С. р. может служить совместное окисление окиси углерода и водорода: 2H2 + O2 = 2H2O и 2CO + О2 = 2CO2. Вторая реакция в отсутствие водорода не идёт до очень высоких температур, при добавлении же в систему H2 она становится легко осуществимой. В качестве количественной характеристики для С. р. используют фактор индукции I, равный отношению количеств прореагировавших акцептора и индуктора, выраженных в молях (грамм-молекулах) или грамм-эквивалентах; в данном примере .
Основные черты механизма и кинетических особенностей С. р. были установлены при исследовании окислительных реакций в растворах Н. А. Шиловым. В основе явления сопряжения реакций, или химической индукции, лежит образование промежуточных веществ, возникающих при первичной реакции и осуществляющих перенос индуктивного влияния первичной реакции на вторичную. Как правило, С. р. относятся к цепным реакциям — вслед за образованием под действием индуктора первичного радикала развивается цепь превращений молекул акцептора уже без участия молекул индуктора. Во многих случаях С. р. близки к автокаталитическим реакциям (см. Автокатализ).
Лит. см. при ст. Кинетика химическая.
Сопряжённые точки
Сопряжённые то'чки в оптике, пары точек, в каждой из которых одна является по отношению к оптической системе объектом, вторая — его изображением; при этом согласно обратимости теореме объект и изображение могут взаимно меняться местами. Понятие С. т. вполне строго применимо лишь к идеальным (безаберрационным) оптическим системам в их параксиальных областях (см. Параксиальный пучок лучей). Для реальных систем оно представляет собой широко используемое приближение.
Сопряжённые функции
Сопряжённые фу'нкции, функции u (х, у), u(x, у) двух переменных х и у, связанные в некоторой области D условиями Коши — Римана (см. Коши—Римана уравнения);
; .
При определённых условиях, например при непрерывности частных производных первого порядка, С. ф. u и u являются соответственно действительной и мнимой частью некоторой аналитической функции f (x + iy). Они удовлетворяют в области D уравнению Лапласа