Шрифт:
Интервал:
Закладка:
Сопротивление индуктивное
Сопротивле'ние индукти'вное, величина, характеризующая сопротивление, оказываемое переменному току индуктивностью цепи (её участка); измеряется в омах. В случае синусоидального тока С. и. xL выражается в виде произведения wL, где w — угловая частота тока, L — индуктивность цепи. С. и. равно отношению амплитуды напряжения на зажимах цепи, имеющей индуктивный характер (обладающей малым сопротивлением активным и достаточно большой индуктивностью: такую цепь можно считать эквивалентной индуктивности катушке), к амплитуде тока в ней. При постоянном токе в катушке (w = 0) С. и. равно нулю. Когда через катушку протекает переменный ток, электрическая энергия передаётся от источника тока магнитному полю катушки и затем обратно, причём средняя за период мощность равна нулю, поэтому С. и. называется реактивным.
Сопротивление магнитное
Сопротивле'ние магни'тное, характеристика магнитной цепи. См. Магнитное сопротивление.
Сопротивление материалов
Сопротивле'ние материа'лов, наука о прочности и деформируемости элементов (деталей) сооружений и машин. Основные объекты изучения С. м. — стержни и пластины, для которых устанавливаются соответствующие методы расчёта на прочность, жёсткость и устойчивость при действии статических и динамических нагрузок. С. м. базируется на законах и выводах теоретической механики, но, помимо этого, учитывает способность материалов деформироваться под действием внешних сил. Физико-механические характеристики (предел текучести, предел прочности, модуль упругости и т.п.), необходимые для оценки прочности и деформативности материалов, определяются при помощи испытательных машин и специальных измерительных приборов — тензометров. При испытаниях обеспечиваются требуемые условия загружения и высокая точность измерения деформаций испытываемых образцов материалов. Наиболее характерно испытание на растяжение образцов, представляющих собой стержни круглого сечения или полосы с сечением в виде узкого прямоугольника. По результатам этих испытаний строится т. н. диаграмма растяжения-сжатия. Располагая диаграммой испытания и пользуясь разработанными в С. м. методами расчёта, можно предсказать, как будет вести себя реальная конструкция, изготовленная из того же материала.
Основное содержание и методы С. м. При деформации твёрдого тела под нагрузкой изменяется взаимное расположение его микрочастиц, вследствие чего в теле возникают внутренние напряжения. В С. м. определяются наибольшие напряжения в элементах сооружений или деталях машин. Они сравниваются с нормативными величинами, т. е. с напряжениями, которые можно допустить, не опасаясь повреждения или разрушения этих элементов (деталей). Проверке подлежат также деформации тела и перемещения его отдельных точек. Помимо необходимой прочности, конструкция должна быть также устойчивой, т. е. обладать способностью при малых случайных кратковременных воздействиях, нарушающих её равновесие, лишь незначительно отклоняться от исходного состояния. Выполнение этого требования зависит от внешних сил, геометрии элемента (детали) и от физических констант материала.
Для расчёта элементов конструкций в С. м. разрабатываются приближённые инженерные методы, использующие кинематические и статические гипотезы, которые в большинстве случаев оказываются достаточно близкими к действительности. При выводе расчётных формул для определения напряжений и перемещений производится схематизация рассчитываемого элемента сооружения, его опорных закреплений и действующей нагрузки, иначе говоря, создаётся расчётная схема (модель) объекта.
При построении общей теории расчёта в С. м. рассматриваются т. н. идеализированные тела со свойствами, лишь приближённо отражающими поведение реальных объектов. Тела считаются однородными (со свойствами, одинаковыми во всех точках), сплошными (без пустот), обладающими упругостью (способностью восстанавливать свои размеры после снятия нагрузки), изотропными (с одинаковыми упругими свойствами по всем направлениям). На основе изучения простейших деформаций — растяжения-сжатия, кручения, изгиба в С. м. выводятся формулы, позволяющие для каждого из этих видов деформаций определять напряжения, перемещения и деформации в отдельных точках тела. При наличии одновременно двух или нескольких простейших деформаций, протекающих в упругой стадии (для которой справедлива линейная зависимость между напряжением и деформациями), напряжения и деформации, найденные отдельно для каждого вида, суммируются.
Многие материалы (например, бетон) обладают свойством ползучести (см. Ползучесть материалов), вследствие которой деформации могут возрастать со временем при неизменной нагрузке. В С. м. устанавливаются законы развития ползучести и время, в течение которого она заметно проявляется, а также рассматривается воздействие на стержень ударной нагрузки, при которой возникают динамические напряжения; последние определяются по приближённым формулам, выведенным на основе ряда допущений. При расчёте элементов сложной формы, для которых аналитические формулы вывести не удаётся, применяют экспериментальные методы (например, оптический, лаковых покрытий, муаровых полос и др.), позволяющие получать наглядную картину распределения деформаций по поверхности исследуемого элемента (детали) и вычислять напряжения в его отдельных точках. Наибольшую трудность представляет определение т. н. остаточных напряжений, которые могут возникать в элементах конструкций, не несущих нагрузки (например, при сварке или в процессе прокатки стальных профилей).
Одна из важных задач С. м. состоит в создании т. н. теорий прочности, на основе которых можно проверить прочность элементов в сложном напряжённом состоянии, исходя из прочностных характеристик, полученных опытным путём для простого растяжения-сжатия. Существует ряд теорий прочности; в каждом отдельном случае пользуются той из них, которая в наибольшей степени отвечает характеру нагружения и разрушения материала.
Историческая справка. История С. м., как и многих др. наук, неразрывно связана с историей развития техники. Зарождение науки о С. м. относится к 17 в.; её основоположником считается Галилей, который впервые обосновал необходимость применения аналитических методов расчёта взамен эмпирических правил. Важным шагом в развитии С. м. явились экспериментальные исследования Р. Гука (60—70-е гг. 17 в.), установившего линейную зависимость между силой, приложенной к растянутому стержню, и его удлинением (закон Гука). В 18 в. большой вклад в развитие аналитических методов в С. м. был сделан Д. Бернулли, Л. Эйлером и Ш. Кулоном, сформулировавшими важнейшие гипотезы и создавшими основы теории расчёта стержня на изгиб и кручение. Исследования Эйлера в области продольного изгиба послужили основой для создания теории устойчивости стержней и стержневых систем. Т. Юнг ввёл (1807) понятие о модуле упругости при растяжении и предложил метод его определения.
Важный этап в развитии С. м. связан с опубликованием (в 1826) Л. Навье первого курса С. м., содержавшего систематизированное изложение теории расчёта элементов конструкций и сооружений. Принципиальное значение имели труды А. Сен-Венана (2-я половина 19 в.). Им впервые были выведены точные формулы для расчёта на изгиб кривого бруса и сформулирован принцип, согласно которому распределение напряжений в сечениях, отстоящих на некотором расстоянии от места приложения нагрузки, не связано со способом её приложения, а зависит только от равнодействующей этой нагрузки.
Большие заслуги в развитии С. м. принадлежат русскому учёным М. В. Остроградскому, исследования которого в области С. м., строительной механики, математики и теории упругости приобрели мировую известность, и Д. И. Журавскому, впервые установившему (1855) наличие касательных напряжений в продольных сечениях бруса и получившему формулу для их определения (эта формула применяется и в современной практике инженерных расчётов). Всеобщее признание получили исследования Ф. С. Ясинского, разработавшего (1893) теорию продольного изгиба в упругой стадии и за её пределами (рекомендации Ясинского послужили основой для разработки современных нормативных документов в СССР и за рубежом).
В начале 20 в. расширение масштабов применения железобетонных и стальных конструкций, появление сложных машин и механизмов обусловили быстрое развитие науки о С. м. Были опубликованы классические учебники С. П. Тимошенко по С. м. и строительной механике, труды А. Н. Динника по продольному изгибу, устойчивости сжатых стержней и др.
- Большая Советская Энциклопедия (ЛЮ) - БСЭ БСЭ - Энциклопедии
- Большая Советская Энциклопедия (ОС) - БСЭ БСЭ - Энциклопедии
- Большая Советская Энциклопедия (ОТ) - БСЭ БСЭ - Энциклопедии
- Большая Советская Энциклопедия (ВТ) - БСЭ БСЭ - Энциклопедии
- Большая Советская Энциклопедия (ФТ) - БСЭ БСЭ - Энциклопедии