Шрифт:
Интервал:
Закладка:
При переходе от классической хаотической системы к соответствующей квантовой хаос исчезает, оставляя след в виде связанных между собой флуктуаций. Изучение этих следов получило название квантовой хаологии, или постмодернистской квантовой механики. Классическая механика является детерминированной и вместе с тем хаотической; квантовая механика, напротив, имеет вероятностную природу и вместе с тем отличается упорядоченностью. Следовательно, квантовая механика избавила нас от проклятия хаоса ценой того, что электроны, фотоны и прочие квантовые частицы кажутся нам безумными.
* * *
Новая непредсказуемостьПьер-Симон Лаплас был уверен, что система, описываемая законами Ньютона, должна быть предсказуемой. Однако оказалось, что динамическая система, подчиняющаяся законам Ньютона, может стать хаотической. Таким образом, одним из самых важных результатов теории хаоса стало опровержение тождества «детерминизм = предсказуемость».
Возможно, причина, по которой на протяжении трех столетий детерминизм отождествлялся с предсказуемостью, заключалась в том, что обычно рассматривались только линейные системы, а нелинейные оставались вне поля зрения ученых. Таким образом, вся Вселенная казалась подобной игрушечному механизму, столь же предсказуемому, как полет пушечного ядра или работа часового механизма.
Как это ни парадоксально, хаос детерминирован, он создается по строгим правилам, но накладывает фундаментальные ограничения на возможности составления прогнозов. Если мы допустим небольшую ошибку при измерении начального состояния системы (а это происходит постоянно, ведь в реальной жизни мы имеем дело с округленными и приближенными значениями), то в прогнозе, составленном по уравнению динамики, эта ошибка возрастет. Таким образом, прогнозированию препятствует сама реальность (любое измерение имеет конечную точность) и хаотическая структура уравнения динамики (изначальная ошибка возрастает экспоненциально).
Непредсказуемый хаос всегда остается детерминированным: если в две практически идентичные хаотические системы подать один и тот же входной сигнал, то выходной сигнал систем будет одинаковым, хотя и непредсказуемым. В качестве примера случайного и абсолютно детерминированного процесса можно привести бросок игральной кости. Сложно предсказать только одно — какой именно гранью вверх упадет кубик, поскольку любое незначительное изменение положения и скорости кубика повлияет на результат. Здесь источником случайности является выбор начальных условий. Если мы не можем полностью контролировать начальные условия, то и прогноз составить нельзя.
Две изначально близкие траектории в аттракторе Лоренца отдаляются друг от друга. Обе траектории берут начало в одной и той же окрестности (обведена кружочком), однако по прошествии определенного времени они окажутся в разных частях аттрактора.
Существование хаоса ставит очень серьезный философский вопрос. Верификация научной теории заключается в составлении прогнозов и их последующей проверке.
Но для хаотических явлений в принципе невозможно делать прогнозы в среднесрочном или долгосрочном периоде. Предположим, что математик описывает некий физический процесс с помощью уравнений, демонстрирующих хаотическую динамику, то есть динамику, чувствительную к начальным условиям, в которой существуют случайные траектории, сплетенные с периодическими. Если наш математик с помощью классических математических методов попытается предсказать, каким будет состояние системы для данных начальных условий по прошествии длительного промежутка времени, он придет к выводу: «Я могу составить прогноз только в случае, если вы укажете положение начальной точки с бесконечно большой точностью». Так как на практике это невозможно, определить поведение системы в долгосрочном периоде нельзя. Ни один физик не рискнет работать с подобными уравнениями, ведь полученные результаты будут абсолютно случайными. Именно это произошло с метеорологом Эдвардом Лоренцем и астрофизиком Мишелем Эно, работы которых изначально не были оценены другими учеными.
Философский смысл проблемы таков: поскольку хаос подразумевает чувствительность к начальным условиям, неизбежные ошибки при определении начальных условий будут возрастать экспоненциально, и в результате практические прогнозы, составленные на основе хаотической модели, обязательно будут ошибочными. Возникает вопрос: как можно использовать моделирование, если в общем случае ошибка будет очень велика?
Ответ таков: хаотические системы могут оказаться невероятно полезными при прогнозировании, однако сам хаос по своей природе накладывает серьезные ограничения на возможность составления прогнозов.
Однако динамику хаотических систем можно спрогнозировать в краткосрочном периоде. А после этого, сколь бы точно мы ни измерили начальные данные, мы неизбежно допустим ошибку, которая впоследствии существенно возрастет, и с определенного момента динамика хаотической системы станет непредсказуемой.
Но эта непредсказуемость не проявляется мгновенно. Если составить прогнозы в среднесрочном и долгосрочном периоде нельзя, то, получается, наука бесполезна? Вовсе нет, ведь помимо количественных оценок существуют и качественные. Процитируем Пуанкаре, который в свое время объяснил суть вопроса с присущей ему четкостью:
«Физик или инженер скажет нам: „Можете ли вы проинтегрировать это дифференциальное уравнение? Результат понадобится мне через восемь дней, чтобы закончить проект здания в срок". Мы ответим: „Это уравнение не относится ни к одному из интегрируемых типов, и вам прекрасно известно, что других типов не существует". „Да, это мне известно, но для чего же тогда нужны вы, господин математик?" Ранее уравнение считалось решенным только тогда, когда его решение можно было представить с помощью конечного числа известных функций, однако найти решение в таком виде можно едва ли для одного процента уравнений. Мы всегда можем решить любую задачу „качественно", то есть попытаться определить общий вид кривой, описывающей неизвестную функцию».
Хаос помогает увидеть взаимосвязи, формы и структуры там, где никто не подозревает. В хаосе присутствует порядок: случайность описывается геометрически.
При подтверждении научной теории следует придавать большее значение геометрии, а не результатам экспериментов, то есть не количественным, а качественным факторам. Актуальный пример этому мы приведем в следующих главах, где будем говорить о глобальном изменении климата: метеорологи и климатологи часто жертвуют точностью прогноза, чтобы понять общую картину. Они ежедневно сталкиваются с нелинейными задачами и вынуждены делать выбор: составить точную модель, позволяющую делать прогнозы (существование такой модели по определению невозможно), или предпочесть ей упрощенную модель, чтобы рассмотреть явление в общих чертах. Цель науки — не только прогнозирование, не только поиск набора эффективных рецептов, но и понимание природы вещей.
К примеру, Декарт своей теорией вихрей и движущейся материи объяснял всё, но не предсказывал ничего. Ньютон, напротив, своими законами и теорией тяготения рассчитал всё, но не объяснил ничего. История подтвердила правоту Ньютона, а измышления Декарта отошли в область фантазий. На протяжении многих веков на первый план выдвигалась именно возможность составления прогнозов. Ньютоновская теория тяготения одержала верх над декартовой теорией вихрей, низвергнув ее в небытие. С математическими моделями теории хаоса происходит то же самое, что и с теориями Декарта: они имеют качественный характер и не могут применяться для составления прогнозов или как руководство к действию, а служат скорее для описания и понимания явлений природы.
Если математика и физика прошлого изучали круги и часовые механизмы, то математика и физика наших дней интересуются фракталами и облаками.
Глава 4. Математическое описание глобального изменения климата
То, что можно полностью контролировать, никогда не бывает полностью реальным; то, что реально, никогда не бывает полностью контролируемым.
Владимир НабоковЕсли бы человечество могло составить список самых насущных проблем третьего тысячелетия, одной из них наверняка стало бы глобальное изменение климата. Это многогранная задача, которая имеет не только научный, но, как вы увидите далее, экономический и политический аспект. Мы рассмотрим эту проблему с точки зрения математики, поскольку математика хаоса играет в ней очень важную роль.
Математика и экологияМатематическая экология — раздел математики, пребывающий в более чем почтенном возрасте: он «повзрослел» еще два столетия назад, в XIX веке. В то время многие ученые стали применять математические методы для изучения взаимоотношений между живыми организмами и окружающей средой. Мы уже знакомы с некоторыми из этих ученых, в частности с Пьером Франсуа Ферхюльстом, который описал логистическое отображение для моделирования динамики численности определенных популяций. К числу этих ученых принадлежал и итальянский математик и физик Вито Вольтерра (1860–1940), известный тем, что сформулировал систему нелинейных дифференциальных уравнений, описывавших динамику биологической системы, в которой между собой взаимодействовали всего два вида живых существ — хищники и жертвы. Однако математика оказалась полезной не только при изучении динамики численности популяций, но и, уже в XX веке, при моделировании погоды и климата — двух систем, элементами которых являемся мы, люди. Глобальное изменение климата представляет собой междисциплинарную задачу: ее решением занимаются климатологи, метеорологи, физики, геологи, биологи, экономисты. Климатическая система относится к сложным системам и состоит из пяти подсистем: атмосферы (воздуха), гидросферы (воды), литосферы (земли), криосферы (льда) и биосферы (живых организмов). Бесконечную сложность окружающей среды нельзя понять, не изучив множество связей между экосистемами Земли.
- Бабочка и ураган. Теория хаоса и глобальное потепление - Мадрид Карлос - Математика
- Мир математики. Том 16. Обман чувств. Наука о перспективе - Франсиско Мартин Касальдеррей - Математика
- Занимательная теория вероятности - Александр Исаакович Китайгородский - Математика / Прочая научная литература
- Том 28. Математика жизни. Численные модели в биологии и экологии. - Рафаэль Лаос-Бельтра - Математика
- Невероятно – не факт - Китайгородский Александр Исаакович - Математика