Читать интересную книгу 4. Кинетика. Теплота. Звук - Ричард Фейнман

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 14 15 16 17 18 19 20 21 22 ... 37

Nc=nv, (42.2)

т. е. числу молекул, достигших единичной площадки и сконденсировавшихся.

Но атомы жидкости непрерывно пляшут, и время от времени отдельные атомы выскакивают наружу. Теперь нам нужно выяснить, часто ли это происходит. При равновесии число молекул, выскочивших за 1 сек из жидкости, равно числу мо­лекул, поступивших за это же время на ее поверхность.

Ну, а много ли молекул выскакивает? Чтобы выскочить наружу, молекула должна как-то умудриться приобрести некоторую добавочную энергию, которая окажется больше, чем энергия ее соседок. И этот избыток энергии должен быть довольно большим, ведь наша молекула очень сильно притя­гивается к остальным молекулам жидкости. Обычно ей так и не удается преодолеть этого сильного притяжения, но иногда при столкновениях на ее долю выпадает излишек энергии. Шансы получить необходимую в нашем случае избыточную энергию W невелики, если W>>kT. Действительно, вероятность того, что атом приобретает энергию, большую чем W, равна ехр(-W/kT). Это общий принцип кинетической теории: шансы призанять энергию W сверх средней энергии равны е, возве­денному в степень, показатель которой равен отношению W к kT со знаком минус. Предположим, что некоторым молекулам удалось получить эту энергию. Теперь можно установить, сколько молекул покидает поверхность жидкости за 1 сек. Конечно, получение молекулой нужной энергии еще не означает, что испарение обеспечено. Ведь эта молекула может находиться слишком глубоко в жидкости, а если она даже и находится у поверхности, то может двигаться не туда. Число молекул, покидающих единичную площадку за 1 сек, — это примерно число молекул на единице площади вблизи поверх­ности, деленное на время, которое требуется молекуле для побега, и умноженное на вероятность ехр(-W/kT) готовности молекул к побегу, в том смысле, что они уже получили доста­точное количество энергии.

Предположим, что каждая молекула на поверхности жидко­сти занимает определенную площадку площади А. Тогда число молекул на единице поверхности жидкости равно 1/А. А много ли молекуле нужно времени, чтобы совершить свой побег? Если молекулы движутся с определенной средней скоростью v и должны пройти расстояние, равное, скажем, диаметру моле­кулы D (толщине наружного слоя), то время, нужное для преодоления этого расстояния, и есть время побега, если только молекула обладает достаточной энергией. Это время равно D/v. Таким образом, число испаряющихся молекул приблизительно равно

Заметим, что произведение площади каждой молекулы на тол­щину слоя приблизительно равно объему Va, отведенному каж­дой молекуле. Итак, для получения равновесия мы должны иметь Nc=Ne, или

Можно выкинуть из этого равенства скорости, потому что они равны; если даже специально отметить, что одна из них — скорость молекулы пара, а другая — скорость испаряющейся молекулы, — все равно они одинаковы, ведь мы знаем, что средняя кинетическая энергия обеих молекул (в одном на­правлении) равна 1/2kT. Но можно сказать: «Нет! Нет! Ведь испаряются только особо быстрые молекулы. Только они приобрели достаточный избыток энергии». Не совсем так, потому что в тот момент, когда эти молекулы выскакивают из жидкости, они теряют этот избыток, преодолевая потенциаль­ную энергию. Поэтому при подходе к поверхности они уже движутся с замедленной скоростью v! Точно так же обстояло дело с распределением молекулярных скоростей в атмосфере — в нижних слоях молекулы были определенным образом рас­пределены по энергиям. Те из них, которые достигали более высоких слоев, распределялись по энергиям точно так же, потому что медленные молекулы вверх совсем не поднимались, а быстрые, поднявшись, двигались медленнее. Испаряющиеся молекулы распределены по скоростям так же, как молекулы, движущиеся в глубине жидкости — поистине поразительный факт. Во всяком случае, нет смысла пытаться столь строго обсуждать нашу формулу, потому что в ней есть и дру­гие неточности; например, мы рассматривали вероятность отражения молекул от поверхности, а не их конденсации и т. д. Мы имеем дело лишь с грубым описанием скорости испарения и конденсации и видим, естественно, что плотность пара n изменяется так же, как и раньше, но теперь мы понимаем этот процесс много лучше, а раньше писали почти произволь­ную формулу.

Более глубокое понимание позволит нам выяснить еще кое-что. Например, предположим, что мы откачиваем пар, причем так быстро, что пар удаляется практически с той же быстротой, с какой образуется (если наш насос очень хороший, а испа­рение происходит медленно). С какой скоростью будет про­исходить испарение, если температура жидкости Т будет под­держиваться постоянной? Предположим, что мы эксперимен­тально уже измерили равновесную плотность пара и нам известно, сколько молекул в единице объема может быть в равновесии с жидкостью при заданной температуре. Теперь мы хотим узнать скорость испарения жидкости. Хотя мы ограничились лишь грубым анализом испарения, он все же дал нам сведения о числе прибывающих молекул пара, правда, с точностью до неизвестного коэффициента отражения. Поэтому мы можем использовать то обстоятельство, что при равновесии число покидающих пар молекул равно числу прибывающих молекул. Правда, пар откачивается и молекулы могут только покидать жидкость, но если оставить пар в покое, то устано­вится равновесная плотность, при которой число прибывающих в жидкость молекул равно числу испаряющихся. Следова­тельно, легко видеть, что в этом случае число молекул, поки­дающих поверхность жидкости за 1 сек, равно произведению неизвестного коэффициента отражения R на число молекул, которые ежесекундно возвращались бы в жидкость, если бы пар не откачивался, потому что именно это число входит в уравнение баланса для испарения при равновесии:

Ne=nvR=(vR/Va)e-W/kT(42.5)

Конечно, легче подсчитать число молекул, переходящих из пара в жидкость, потому что в этом случае не надо ничего предполагать о силах, как это приходилось делать при подсчете числа покидающих жидкость молекул. Проще изменить путь рассуждений.

§ 2. Термоиониая эмиссия

Можно привести еще один пример часто встречающегося процесса, столь похожего на испарение жидкости, что его даже не придется анализировать отдельно. В сущности, это та же самая задача. В любой радиолампе есть источник электронов — вольфрамовая нить накаливания и положительно заряженная пластинка, притягивающая электроны. Оторвавшийся с по­верхности вольфрама электрон немедленно улетает к пластинке. Это — «идеальный» насос, который непрерывно «откачивает» электроны. Возникает вопрос: сколько электронов ежесекундно покидает вольфрамовую проволоку и как их число зависит от температуры? Решение задачи дается той же формулой (42.5), потому что электроны, находящиеся в куске металла, при­тягиваются ионами или атомами металла. Они, грубо го­воря, притягиваются металлом. Чтобы оторвать электрон от металла, надо сообщить ему определенное количество энер­гии, т. е. затратить для этого работу. Эта работа для разных металлов различна. Фактически она изменяется даже в зави­симости от вида поверхности у одного и того же металла, но в целом она составляет несколько электронвольт,—величину, вообще типичную для энергии химических реакций. При этом полезно вспомнить, что разность потенциалов химических элементов, например батареи для магниевой вспышки, которая порождается химическими реакциями, порядка 1 в.

Как определить число электронов, покидающих металл за 1 сек? Очень трудно перечислить все, что может повлиять на выход электрона: легче решить задачу по-другому. Предста­вим, что мы не удаляем вылетевшие электроны, а электроны образуют нечто вроде газа и могут вернуться в металл. В этом случае существует вполне определенная равновесная плотность электронов, которая определяется такой же формулой, как (42.1), где Va, грубо говоря, — объем, отведенный в металле одному электрону, a W=qej (j —так называемая работа выхода, или разность потенциалов, необходимая для того, чтобы вырвать электрон с поверхности металла). Эта формула подскажет нам, сколько электронов должно находиться в окру­жающем пространстве и проникать в металл, чтобы скомпен­сировать потерю тех электронов, которые покинули металл. Теперь легко подсчитать, сколько электронов уйдет из металла, если мы будем непрерывно откачивать их, потому что число ушедших электронов в точности равно числу электронов, которые должны были бы вернуться в металл, если существовал электронный «пар», плотность которого определяется формулой (42.1). Иначе говоря, электрический ток через единичную площадку равен произведению заряда электрона на число электронов, проходящих за 1 сек через площадку единичной площади; последнее равно произведению числа электронов в единичном объеме на скорость: поэтому, как мы уже много раз видели,

1 ... 14 15 16 17 18 19 20 21 22 ... 37
На этом сайте Вы можете читать книги онлайн бесплатно русская версия 4. Кинетика. Теплота. Звук - Ричард Фейнман.

Оставить комментарий