Шрифт:
Интервал:
Закладка:
Глава 42
ПРИМЕНЕНИЯ КИНЕТИЧЕСКОЙ ТЕОРИИ
§ 1. Испарение
§ 2. Термоионная эмиссия
§ 3. Тепловая ионизация
§ 4. Химическая кинетика
§ 5. Законы излучения Эйнштейна
§ 1. Испарение
Эта глава посвящена дальнейшим применениям кинетической теории. В предыдущей главе мы подчеркнули один из выводов этой теории, что средняя кинетическая энергия каждой степени свободы молекулы или любого другого объекта равна 1/2 kT. Сейчас центральным пунктом нашего изложения будет утверждение о том, что отнесенная к единице объема вероятность обнаружить частицу в том или ином месте пропорциональна ехр(-п.э./kT). (Это утверждение мы используем в ряде задач.)
Явления, которые мы собираемся изучить, довольно сложны: испарение жидкости, вылет электронов с поверхности металла или химическая реакция, в которой участвует много атомов. В таких случаях кинетическая теория не дает простых и точных предписаний, ситуация слишком сложна для этого. Поэтому выводы этой главы, за исключением особо оговоренных, весьма неточны. Мы только подчеркнем, что, исходя из кинетической теории, можно более или менее хорошо понять эти явления. Но гораздо более точное представление о них дают термодинамические аргументы или некоторые измерения отдельных критических величин.
Однако полезно знать, хотя бы очень приблизительно, почему то, что происходит, происходит именно так. Тогда, натолкнувшись на явление, которое содержит в себе нечто, чего мы еще не видели, или то, что проанализировать мы еще не собрались, мы, может быть, сможем более или менее точно сказать, что произошло. Такой анализ будет в высшей степени неточным, но в общих чертах верным — верным по сути, но чуть-чуть упрощенным, скажем, в некоторых тонких деталях.
Разберем первый пример — испарение жидкости. Предположим, что большой ящик при заданной температуре заполнен жидкостью и паром поровну. Будем считать, что средние расстояния между молекулами пара довольно велики, а вот в жидкости они упакованы плотно. Задача состоит в том, чтобы определить число молекул, находящихся в газовой фазе, по сравнению с числом молекул, находящихся в жидкости. Какова плотность пара при заданной температуре и как она зависит от температуры?
Пусть n — число молекул пара в единице объема. Это число, естественно, меняется с температурой. С притоком тепла испарение увеличивается. Добавим еще одну величину 1/Va, равную числу атомов в единице объема, содержащихся в жидкости; мы предполагаем, что в жидкости каждой молекуле отведен вполне определенный объем, поэтому чем больше в жидкости молекул, тем больший объем они занимают. Если Va — объем, отведенный одной молекуле, то число молекул в единичном объеме равно единичному объему, деленному на объем, занимаемый молекулой. Далее, предположим, что между молекулами действуют силы притяжения, удерживающие их внутри жидкости. Иначе нельзя понять, почему происходит конденсация. Итак, предположим, что имеется сила притяжения и существует энергия связи молекулы в жидкости, которая теряется при переходе молекул в пар. Это наводит на мысль, что для перевода какой-нибудь молекулы из жидкости в пар, нужно совершить работу W. Существует определенная разность W между энергией молекулы в жидкости и ее энергией в паре, потому что для переноса молекул в пар мы должны оторвать ее от всех молекул, к которым она притягивается.
Теперь обратимся к общему принципу, по которому отношение числа атомов в единице объема в разных областях равно n2/n1=ехр[-(Е2-E1/kT)]. Значит, n —число молекул в единичном объеме пара, деленное на 1/Va(число молекул в единичном объеме жидкости), равно
nVa=e-w/kT. (42.1)
Таково общее правило. Это очень похоже на равновесную атмосферу в ноле тяжести, когда низшие слои газа плотнее верхних, потому что для подъема молекулы на высоту h нужна энергия mgh. В жидкости молекулы размещены плотнее, чем в газе, так как их заставляет 'потесниться энергия «подъема» W, и отношение плотностей равно
ехр(-W/kT).
Это как раз то, что мы хотели вывести — плотность пара изменяется как е в некоторой степени. Показателем служит взятая со знаком минус похожая на энергию величина, деленная на kT. Множители перед экспонентой не особенно интересны, потому что в большинстве случаев плотность пара гораздо меньше плотности жидкости. При этих обстоятельствах, когда мы далеки от критической точки, где плотности почти одинаковы, соотношение плотностей, при котором n много меньше l/Ve, обеспечивается тем, что W много больше kT. Поэтому формулы типа (42.1) интересны только тогда, когда W действительно гораздо больше kT; в этом случае е возводится в громадную отрицательную степень и если немного изменить Т, то изменится слегка и громадная степень, а это изменение повлечет за собой такие изменения экспоненты, которые будут гораздо важнее возможных изменений предэкспоненциальных множителей. Но отчего бы изменяться таким множителям, как l/Va? Да оттого, что наше описание приблизительно. Ведь в действительности каждая молекула не имеет определенного объема; при изменении температуры объем Vане остается постоянным — жидкости сжимаются и расширяются. Есть еще и другие мелочи вроде этой, так что действительная ситуация гораздо сложнее. Почти всюду стоят медленно изменяющиеся с температурой множители. В действительности само W медленно изменяется с температурой, потому что при разных температурах молекулам отведены разные объемы, и притяжение должно быть разным, и т. д. Итак, можно прийти к выводу, что поскольку у нас получилась формула, в которой все неизвестным образом изменяется с температурой, то на самом деле формулы никакой и нет. Но если мы знаем, что показатель у экспоненты W/kT заведомо велик, то можно убедиться, что наибольшие изменения кривой плотности пара как функции температуры обусловлены экспоненциальным множителем. Поэтому если мы будем считать W постоянной величиной, а коэффициент 1/Va — почти постоянной, то это будет хорошим приближением вдоль небольшого интервала нашей кривой. Иначе говоря, основные изменения определяются видом функции ехр(-W/kT),
Выходит, что в природе есть много, очень много процессов, для которых характерно взятие энергии взаймы; основным свойством таких процессов является экспоненциальная температурная зависимость: е возводится в отношение взятой с отрицательным знаком энергии к kT. Это полезный факт, но только в тех случаях, когда энергия велика по сравнению с kT, поскольку главная часть изменений с температурой определяется изменением kT, а не величиной постоянных и других сомножителей.
Давайте рассмотрим сейчас немного подробнее другой способ получения почти аналогичного результата для испарения. Чтобы получить (42.1), мы просто применили всегда справедливое при равновесии правило, но мало что поняли в существе явления. Поэтому невредно попытаться посмотреть детальнее, как происходит испарение. Можно описать его примерно так: молекулы пара непрерывно бомбардируют поверхность жидкости; при ударе они могут либо отскочить от поверхности, либо пробить ее. Что случается чаще, нам неизвестно, может быть, отношение этих исходов равно 50 к 50, а может быть и 10 к 90. Предположим, что поверхность пробивается всегда, потом мы посмотрим, к чему приводит предположение о более прочной поверхности. Тогда в каждый момент будет иметься определенное число атомов, сконденсировавшихся на поверхности жидкости. Число сконденсировавшихся молекул (число молекул, прошедших через площадку единичной площади) равно числу молекул в единице объема n, умноженному на скорость v. Эта скорость молекул связана с температурой; ведь известно, что в среднем 1/2mv2 равно 3/2 kT. Поэтому v —какая-то средняя скорость. Конечно, нужно еще проинтегрировать по углам и сделать всякого рода усреднения, но результат прямо пропорционален корню из среднего квадрата скорости. Таким образом,
Nc=nv, (42.2)
- Ткань космоса: Пространство, время и текстура реальности - Брайан Грин - Физика
- Великий замысел - Стивен Хокинг - Физика
- Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории) - Брайан Грин - Физика
- Теория физического вакуума в популярном изложении - Г. Шипов - Физика
- Неприятности с физикой: взлет теории струн, упадок науки и что за этим следует - Ли Смолин - Физика