Шрифт:
Интервал:
Закладка:
y=F(x-ct)+G(x+ct) (49.1)
будет общим решением для любой струны. Но нам, помимо этого, нужно еще удовлетворить условию неподвижности одного конца. Если в уравнении (49.1) мы положим х=0 и посмотрим, какие будут у в любой момент t, то получим y=F(-ct)+G(+ct). Но эта сумма должна быть нулем в любой момент времени, а это означает, что функция G(+ct) должна быть равна -F(-ct). Другими словами, функция G от некоторой величины должна быть равна функции -F от той же величины со знаком минус. Подставляя снова полученный результат в уравнение (49.1), находим решение поставленной задачи:
y=F(x-ct)-F(-x-ct). (49.2)
Ясно, что это выражение всегда даст y=0, если х положить равным нулю.
На фиг. 49.1 представлена волна, идущая в отрицательном x-направлении вблизи точки х=0, и гипотетическая волна, идущая в противоположном направлении с обратным знаком и с другой стороны от начала координат.
Фиг. 49.1. Отражение от стенки как суперпозиция двух бегущих волн.
Я сказал «гипотетическая», потому что с другой стороны, конечно, никакой колеблющейся струны нет. Истинное же движение струны должно рассматриваться как сумма этих двух волн в области положительных х. Достигнув начала координат, они в точке х=0 полностью уничтожат друг друга, а затем вторая (отраженная) волна, идущая, разумеется, в противоположном направлении, окажется единственной волной в области положительных х. Эти результаты эквивалентны следующему утверждению: волна, достигнув защемленного конца струны, отражается от него с изменением знака. Такое отражение всегда можно понять, если представить себе, как нечто дошедшее до конца струны вылетит затем из-за стены «вверх ногами». Короче говоря, если мы предположим, что струна бесконечна и что, где бы ни находилась волна, бегущая в одном направлении, всегда существует симметричная ей относительно точки х=0 другая волна, бегущая в противоположном направлении, то в самой точке х=0 никакого перемещения не будет, а поэтому безразлично, защемлена ли струна в этом месте или нет.
Следующий наш пример — отражение периодической волны. Предположим, что волна, описываемая функцией F(x-ct), представляет собой синусоидальную волну, которая затем отражается. Тогда отраженная волна -F(-х-ct) тоже будет синусоидальной волной той же частоты, но пойдет она в противоположном направлении. Эту ситуацию проще всего описать с помощью комплексных функций
F(x-ct)=eiw(t-x/c) и F(-х-ct)=eiwa(t+x/c).
Нетрудно убедиться, что если подставить их в выражение (49.2) и положить х=0, то в любой момент времени t перемещение будет равно нулю и, следовательно, необходимое условие окажется выполненным. Воспользовавшись теперь свойством экспоненты, можно записать результат в более простом виде:
y=eiwt(e-iwx/c-eiwx/c)=-2ieiwtsin(wx/c). (49.3)
Мы получили нечто новое и интересное. Из этого решения ясно, что если мы посмотрим на любую точку х нашей струны, то увидим, что она осциллирует с частотой w. Совершенно неважно, где находится эта точка, все равно частота будет той же самой! Однако на струне есть такие места (где sin (wx/c)=0), которые вообще не перемещаются. Более того, если в любой момент времени t сделать моментальный снимок колеблющейся струны, то на фотографии получится синусоидальная волна, но величина ее амплитуды будет зависеть от времени t. Из выражения (49.3) можно видеть, что длина одного цикла синусоидальной волны равна длине какой-либо из волн;
l=2pc/w. (49.4)
Неподвижные точки удовлетворяют условию sin(wx/c)=0, которое означает, что wx/c=0, p, 2p, ..., np, ... . Эти точки называются узлами. Каждая точка между двумя соседними узлами движется синусоидально вверх и вниз, но способ ее движения остается фиксированным в пространстве. Это основная характеристика того, что называется собственным колебанием, гармоникой или модой. Если движение обладает тем свойством, что каждая точка предмета движется строго синусоидально и все точки движутся с одинаковой частотой (хотя одни, может быть, больше, а другие меньше), то мы имеем дело с собственным колебанием.
§ 2. Волны в ограниченном пространстве и собственные частоты
Перейдем к обсуждению следующей интересной задачи. Что произойдет, если струну закрепить с двух концов, скажем в точках x=0 и x=L? Давайте начнем с идеи отражения волны, с некоего горба, движущегося в одном направлении. С течением времени этот горб подойдет к одному концу струны и в конце концов превратится в небольшой всплеск, поскольку здесь он складывается с перевернутым ответным горбом, идущим с другой стороны. Наконец первый горб совсем исчезнет, а в обратном направлении побежит другой, «ответный» горб, и весь процесс повторится уже на другом конце. Как видите, задача решается совсем просто, впрочем здесь возникает интересный вопрос: можно ли в этом случае получить синусоидальную волну (только что описанное решение периодично, но, разумеется, не синусоидально периодично). Давайте попытаемся «вставить» в нашу струну синусоидально периодическую волну. Если один конец струны закреплен, то мы знаем, что должно получиться нечто похожее на наше предыдущее решение (49.3). Но то же самое должно получиться и у второго конца, ведь он тоже закреплен. Поэтому единственная возможность получить периодическое синусоидальное движение—это взять волну, которая в точности укладывается на длине струны. В противном случае мы не получим собственной частоты, с которой струна могла бы продолжать свои колебания. Короче говоря, если по струне пустить синусоидальную волну, которая в точности укладывается на ее длине, то она сохраняет свою идеальную синусообразную форму и будет гармонически колебаться с некоторой частотой.
Математически мы можем задать форму волны в виде функции sinkx, где k=w/c, как и в уравнениях (49.3) и (49.4). Эта функция обращается в нуль при х=0, однако то же условие должно выполняться и на другом конце струны. Дело в том, что k уже не будет произвольным, как в случае полуограниченной струны. Оба конца могут быть закреплены при одном-единственном условии, что sinkL=0. Но чтобы синус был равен нулю, его угол должен быть кратен целому числу p, например 0, p, 2p и т. д. Поэтому уравнение
kL=np (49.5)
в зависимости от того целого числа, которое мы подставим в него, дает полный набор различных чисел k. При этом каждому числу k соответствует частота w, которая по формуле (49.3) равна просто
w=kc=npc/L. (49.6)
Итак, мы нашли, что синусоидальные колебания струны могут происходить только с некоторыми определенными частотами. Это — наиболее важная характеристика волн в ограниченной области. Сколь бы сложна ни была система, всегда оказывается, что в ней могут быть чисто синусоидальные колебания, но частота их определяется свойствами данной системы и природой ее границ. В случае струны возможно множество различных частот, каждой из которых соответствует определенное собственное колебание — движение, синусоидально повторяющее самое себя.
На фиг. 49.2 показаны первые три собственные гармоники нашей струны.
Фиг. 49.2. Первые три гармоники колеблющейся струны.
Длина волны l первой из них равна 2L. В этом легко убедиться, продолжив волну до точки x=2L и получив полный цикл синусоидальной волны. Угловая частота w равна в общем случае 2pc, деленному на длину волны К, а поскольку сейчас у нас l=2L, то частота будет равна pс/b, что согласуется с формулой (49.6) при n=1. Обозначим эту частоту через w1 Следующая собственная гармоника напоминает бантик из двух петель с узлом посредине. Ее длина просто равна L. Соответствующая величина k, а следовательно, и частота w должны быть вдвое большими, т. е частота равна 2w1. Частота третьей собственной гармоники оказывается равной Зw1 и т. д. Таким образом, различные собственные гармоники кратны целому числу низшей частоты w1 т. е. w1, 2w1, Зw1 и т. д.