Шрифт:
Интервал:
Закладка:
Во всяком случае, телевизионная полоса начинается с частоты 54 Мгц. Первый телевизионный канал в Соединенных Штатах работает в полосе от 54 до 60 Мгц, т. е. имеет ширину 6 Мгц. «Постойте,— можете сказать вы,— ведь только сейчас мы доказали, что боковые полосы должны быть с обеих сторон, а поэтому ширина должна быть вдвое больше». Оказывается, радиоинженеры довольно хитрый народ. Если при анализе модулирующего сигнала использовать не только косинус, а косинус и синус, чтобы учесть разность фаз, то между высокочастотной и низкочастотной боковыми полосами обнаружится наличие определенного постоянного соотношения. Этим мы хотим сказать, что вторая боковая полоса не содержит никакой новой информации по сравнению с первой, так что одну из них вполне можно выкинуть. Приемник же устроен таким образом, что потерянная информация восстанавливается из несущей частоты и одной боковой полосы. Передача с помощью одной боковой полосы — очень интересный метод уменьшения ширины полосы, необходимой для передачи информации.
§ 4. Локализованный волновой пакет
Следующий вопрос, который мы хотим обсудить,— это интерференция волн как в пространстве, так и во времени. Предположим, что в пространстве распространяются две волны. Вы, конечно, знаете, что распространение волны в пространстве, например звуковой, можно описать с помощью экспоненты exp[i(wt-kx)]. Такая экспонента удовлетворяет волновому уравнению при условии, что w2=k2с2, где с — скорость распространения волны. В этом случае экспоненту можно записать в виде ехр[ik(x-ct)], что является частным случаем общего решения f(x-ct). Такая экспонента должна описывать волну, распространяющуюся со скоростью w/k, равной с, и поэтому здесь все в порядке.
Давайте теперь складывать две такие волны. Пусть первая волна распространяется с одной частотой, а вторая волна — с какой-то другой. Случай неравных амплитуд рассмотрите самостоятельно, хотя существенного отличия здесь нет. Таким образом, мы хотим сложить exp[i(w1t-k1x)]+exp[i(w2t-k2x)]. Это можно сделать с помощью математики, аналогичной использованной нами при сложении двух сигналов. Если скорости с обеих волн одинаковы, то сделать это очень легко; за исключением того, что вместо t стоит t' = t-х/с, это будет то же
самое, что мы недавно проделали:
При этом, естественно, мы получаем точно такие же модуляции, как и раньше, которые, однако, движутся вместе с волной. Другими словами, если сложить две волны, которые не просто осциллируют, но и перемещаются в пространстве, то получившаяся волна также будет двигаться с той же скоростью.
Хотелось бы обобщить это на случай волн, у которых отношение между частотой и волновым числом k не столь просто, например распространение волн в веществе с некоторым показателем преломления. В гл. 31 (вып. 3) мы уже изучали показатель преломления n и выяснили, что он связан с волновым числом следующим образом: А=nw/с. В качестве интересного примера мы нашли показатель преломления n для рентгеновских лучей:
На самом деле в гл. 31 мы получали и более сложные формулы, однако эта ничуть не хуже, так почему бы нам не взять ее в качестве примера.
Нам известно, что даже в том случае, когда w и k не пропорциональны друг другу, отношение w/k все равно будет скоростью распространения данной частоты и данного волнового числа. Это отношение называется фазовой скоростью, т. е. скоростью, с которой движется фаза или узел отдельной волны:
vфаз=w/k. (48.13)
Интересно, что, например, для случая распространения рентгеновских лучей в стекле эта фазовая скорость больше скорости света в пустоте [поскольку n, согласно (48.12), меньше единицы], а это несколько неприятно, ведь не думаем же мы, что можно посылать сигналы быстрее скорости света!
Обсудим теперь интерференцию двух волн, у которых значения w и k связаны какой-то определенной зависимостью. Например, написанная ранее формула для показателя n говорит, что k есть определенная известная функция частоты w. Для большей определенности давайте выпишем формулу зависимости k и w в данной частной задаче:
k=w/c-a/wc (48.14)
где a=Nq2e/2e0m — постоянная. Во всяком случае, мы хотим сложить такие две волны, у которых для каждой частоты существует определенное волновое число.
Давайте сделаем это точно так же, как и при получении уравнения (48.7):
Таким образом, снова получается модулированная волна, распространяющаяся со средней частотой и средним волновым числом, однако сила ее меняется в соответствии с выражением, зависящим от разности частот и разности волновых чисел.
Рассмотрим теперь случай, когда разности между двумя волнами относительно малы. Предположим, что мы складываем две волны с приблизительно равными частотами, при этом (w1+w2)/2 практически равно каждой из частот w. То же можно сказать и о (k1+k2)/2. Таким образом, скорость волны, быстрых осцилляции, узлов действительно остается равной w/k. Но смотрите, скорость распространения модуляций не та же самая! Как нужно изменить х, чтобы сбалансировать некоторую величину времени t? Скорость этих модулирующих волн равна
vM=(w1-w2)/(k1-k2). (48.16)
Скорость движения модуляций иногда называют групповой скоростью. Если мы возьмем случай относительно малой разности между частотами и соответственно относительно малой разности между волновыми числами, то это выражение переходит в пределе в
Другими словами, чем медленнее модуляции, тем медленнее и биения, и вот что самое удивительное — существует определенная скорость их распространения, которая не равна фазовой скорости волны.
Групповая скорость равна производной со по k, а фазовая скорость равна отношению w/k.
Посмотрим, можно ли понять, почему так происходит. Рассмотрим две волны с несколько различными длинами, как это показано на фиг. 48.1. Они то совпадают по фазе, то различаются, то снова совпадают и т. д. Однако теперь эти волны в действительности представляют волны в пространстве, распространяющиеся с немного различными скоростями. Но поскольку фазовая скорость, скорость узлов этих двух волн, не в точности одинакова, то происходит нечто новое. Предположим, что мы едем рядом с одной из волн и смотрим на другую. Если бы они двигались с одинаковой скоростью, то вторая волна оставалась бы относительно нас там же, где и была с самого начала, поскольку мы едем как бы на гребне одной волны и видим гребень второй прямо около себя. Однако в действительности скорости не равны. Частоты немного отличаются друг от друга, а поэтому немного отличаются и скорости. Из-за этой небольшой разницы в скоростях другая волна либо медленно обгоняет нас, либо отстает. Что же с течением времени происходит с узлом? Если чуть-чуть продвинуть одну из волн, то узел при этом уйдет на значительное расстояние вперед (или назад), т. е. сумма этих двух волн имеет какую-то огибающую, которая вместе с распространением волн скользит по ним с другой скоростью. Групповая скорость является той скоростью, с которой передаются модулирующие сигналы.
Если мы посылаем сигнал, т. е. производим какие-то изменения волны, которые могут быть услышаны и расшифрованы кем-то, то это является своего рода модуляцией, но такая модуляция при условии, что она относительно медленная, будет распространяться с групповой скоростью (быстрые модуляции значительно труднее анализировать).
Теперь мы можем показать (наконец-то!), что скорость распространения рентгеновских лучей в куске угля, например, не больше, чем скорость света, хотя фазовая скорость больше скорости света. Чтобы сделать это, нужно найти соотношение dw/dk, которое мы вычислим дифференцированием формулы
(48.14): dk/dw=1/c+a/(w2c). А групповая скорость равна обратной величине, т. е.
что меньше, чем с! Таким образом, хотя фазы могут бежать быстрее скорости света, модулирующие сигналы движутся медленнее, и в этом состоит разрешение кажущегося парадокса!
Разумеется, в простейшем случае w=kc групповая скорость dw/dk тоже равна с, т. е. когда все фазы движутся с одинаковой скоростью, естественно, и групповая скорость будет той же самой.
§ 5. Амплитуда вероятности частиц