Читать интересную книгу Черные дыры и складки времени. Дерзкое наследие Эйнштейна - Кип Торн

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 103 104 105 106 107 108 109 110 111 ... 153

* * Jc

В сентябре 1975 г. я приехал в Москву в пятый раз и привез бутылку «Белой лошади» для Зельдовича. К моему удивлению, я обнаружил, что несмотря на то, что все западные ученые уже согласились с Хокингом и поняли, что черные дыры могут испаряться, никто в Москве не верил расчетам и выводам Хокинга. Хотя результаты Хокинга были подтверждены новыми, совершенно различными методами и информация об этом была опубликована в 1974—75 гг., в СССР об этом мало кто знал. Почему? Потому что в это не верили Зельдович и Старобинский. Они продолжали утверждать, что в процессе излучения черная дыра должна замедлять свое вращение и, в конце концов, перестать излучать совсем. Поэтому она не может испариться полностью. Я пытался спорить с Зельдовичем и Старобинским, но бесполезно: они знали гораздо больше меня о квантовых полях в искривленном

" Слово «практически» связано с рядом неопределенностей в операции, называемой «перенормировкой», с помощью которой вычисляется суммарная энергия, переносимая вакуумными флуктуациями. Эти неопределенности были описаны Робертом Уолдом (бывшим студентом Уилера); они не влияют на испарение черной дыры. По-видимому, полностью от них нельзя избавиться до создания полной квантовой теории гравитации.

пространстве-времени и хотя (как обычно) я был совершенно уверен, что правда на моей стороне, я не мог опровергнуть их доводов.

Я должен был вернуться в Америку во вторник 23 сентября. Вечером в понедельник, когда я упаковывал сумки, в моей комнате в гостинице «Университетская» зазвонил телефон. Это был Зельдович: «Приезжай ко мне, Кип! Я хочу поговорить об испарении черных дыр!» Времени у меня было в обрез, и на частной машине по незнакомому мне маршруту я поспешил к Зельдовичу. У меня возникло чувство, что мы заблудились, но когда мы повернули на Воробьевское шоссе, я успокоился. Сказав шоферу «спасибо», я вышел из машины напротив дома 2Б, быстрым шагом миновал калитку и, пройдя густо заросший деревьями двор, поднялся по ступенькам на второй этаж дома в квартиру Зельдовича.

Зельдович и Старобинский встретили меня на пороге с поднятыми вверх руками, но с ухмылками на лицах. «Мы сдаемся, Хокинг прав, а мы ошибались!» В течение часа они объясняли мне свою версию законов квантовых полей в искривленном пространстве-времени вокруг черной дыры. Вначале казалось, что их версия полностью отличается от версии Хокинга. На самом деле они были совершенно эквивалентны. Но в расчеты Зельдовича и Старобинского вкралась ошибка, и они сделали вывод, что черные дыры не могут испаряться. Исправив ошибку, они согласились с Хокингом.

к к к

В зависимости от того, каким способом будут сформулированы законы квантовых полей в искривленном пространстве-времени вокруг черной дыры, можно по-разному описать ее испарение. Однако во всех случаях источником излучения являются флуктуации вакуума. Проще всего описать излучение черной дыры следующим образом, пользуясь корпускулярной, а не волновой картиной.

Подобно «настоящим» волнам с положительной энергией флуктуации вакуума имеют корпускулярно-волновую природу, т. е. являются одновременно волнами и частицами (Врезка 4.1). Их волновую природу мы уже отмечали (Врезка 12.4): флуктуации происходят случайным и непредсказуемым образом, при этом положительная и отрицательная энергии моментально возникают то тут, то там, а средняя энергия равна нулю. Корпускулярную природу можно описать в рамках понятия виртуальных частиц, которые возникают парами и живут очень короткое время за счет энергии, заимствованной у соседних областей пространства, после чего аннигилируют и исчезают, отдавая вновь свою энергию смежным областям. В случае электромагнитных флуктуаций вакуума виртуальными ча-

Реальный фотон

t

О

й фотон

Приливная гравитацияГоризонт событий

фотон

Горизонт событий

12.2. Механизм испарения черных дыр с точки зрения наблюдателя, падающего внутрь. Слева-, приливная гравитация черной дыры растаскивает пару виртуальных фотонов друг от друга, снабжая их энергией. Справа-, виртуальные фотоны, получив достаточное количество энергии, материализуются в реальные фотоны, один из которых улетает прочь от черной дыры, а другой падает в ее центр

стицами являются виртуальные фотоны-, в случае гравитационных флуктуаций вакуума — виртуальные гравитоны'1.

На рис. 12.2 показано, каким образом флуктуации вакуума заставляют испаряться черные дыры. В системе отсчета наблюдателя, падающего внутрь черной дыры, возле горизонта событий черной дыры появляется пара виртуальных фотонов (слева). Виртуальные фотоны могут легко отделиться друг от друга, пока они оба остаются в области с положительной энергией электромагнитного поля. Эта область может быть и крошечной, и очень большой, поскольку флуктуации вакуума возникают во всех диапазонах. Однако размеры области всегда будут соответствовать длине флуктуирующей электромагнитной волны, так что виртуальные фотоны могут удалиться друг от друга только на одну длину волны. Если длина волны примерно равна окружности черной дыры, то виртуальные фотоны могут легко отдалиться друг от друга на четверть этой длины окружности, как показано на рисунке. Приливные силы гравитации возле горизонта событий очень сильны; они очень 109

активно расталкивают виртуальные фотоны друг от друга, сообщая им большую энергию, как это представляется падающему на черную дыру наблюдателю, который находится на полпути между ними. Увеличения энергии фотонов к тому времени, как они будут находиться на расстоянии, равном четверти окружности горизонта событий, хватит для превращения фотонов в настоящие, долгоживущие фотоны (правая часть рис. 12.2). И у них еще остается достаточно энергии, чтобы отдать ее обратно смежным областям пространства с отрицательной энергией. Фотоны, ставшие теперь реальными, отделяются друг от друга. Один попадает внутрь горизонта событий и навсегда потерян для внешней Вселенной. Другой ускользает от черной дыры, унося с собой энергию (следовательно, и массу110), полученную за счет приливных сил гравитации. Черная дыра, у которой уменьшилась масса, немного сжимается.

Этот механизм излучения частиц совершенно не зависит от того, что частицы — фотоны и им соответствуют электромагнитные волны. Механизм одинаково хорошо будет работать для всех других видов частиц-волн (т. е. для всех других типов излучения: гравитационного, нейтрино и т. д.); иными словами, черная дыра испускает все виды излучения.

Перед тем как виртуальные частицы материализуются в реальные, они должны находиться на расстоянии меньшем, чем примерно длина соответствующей волны. Но для того чтобы получить от приливных сил гравитации черной дыры энергию, достаточную для материализации, они должны удалиться друг от друга примерно на четверть длины окружности черной дыры. Это означает, что длины волн частиц, излучаемых черной дырой, должны быть не менее четверти длины окружности черной дыры.

Черная дыра с массой в два раза больше массы Солнца имеет длину окружности 35 км, и излучаемые ею частицы, соответственно, имеют длину волны 9 км и больше. По сравнению со световыми или обычными радиоволнами это гигантские длины волн, но они не сильно отличаются от длин гравитационных волн, которые излучала бы черная дыра при столкновении с другой черной дырой.

* * *

В начале своей научной карьеры Хокинг старался быть предельно скрупулезным в своих исследованиях. Он никогда ничего не утверждал

до тех пор, пока не получал неоспоримых доказательств. Однако к 1974 г. он изменил свою позицию. «Я бы предпочел быть правым, а не скрупулезным», — твердо заявил он мне. Большая скрупулезность требует больше времени. К 1974 г. Хокинг поставил перед собой цель добиться полного слияния ОТО и квантовой механики, а также понять происхождение Вселенной — цель, для достижения которой требовалось огромное количество времени и сосредоточенности. Возможно, он ощущал недостаток отведенного ему времени острее, чем другие люди. Причиной, естественно, была его болезнь. Поэтому Хокинг счел уже возможным пренебрегать излишней тщательностью, не уделяя слишком много внимания детальному объяснению всех аспектов своих открытий. Он должен был двигаться вперед с огромной скоростью.

Так случилось, что Хокинг, получив в 1974 г. твердое доказательство того, что черная дыра излучает так, как если бы она имела температуру, пропорциональную ее поверхностной гравитации, сразу перешел к утверждению, без соответствующего доказательства, что все остальные подобия между законами механики черных дыр и законами термодинамики — более чем простое совпадение. По его мнению, законы черных дыр — это то же самое, что и законы термодинамики, но в замаскированном виде. Из этого утверждения и твердо доказанного соотношения между температурой и поверхностной гравитацией Хокинг вывел точную зависимость между энтропией черной дыры и площадью ее поверхности: энтропия в 0,10857... раза больше площади поверхности, деленной на постоянную Планка—Уилера111. Другими словами, невращающаяся черная дыра с массой десять солнечных масс имеет энтропию 4,6х1078. Это примерно то же самое, что говорил Бекенштейн.

1 ... 103 104 105 106 107 108 109 110 111 ... 153
На этом сайте Вы можете читать книги онлайн бесплатно русская версия Черные дыры и складки времени. Дерзкое наследие Эйнштейна - Кип Торн.

Оставить комментарий