Майкл Брукс
Искусство большего. Как математика создала цивилизацию
Michael Brooks
The Art of More. How Mathematics Created Civilization
© Michael Brooks 2021
© З. Мамедьяров, перевод на русский язык, 2024
© А. Бондаренко, художественное оформление, макет, 2024
© ООО “Издательство Аст ”, 2024
Издательство CORPUS ®
* * *
От автора
Здесь рады всем – и тем, кто любит математику, и тем, кто всегда ее ненавидел, и тем, кто просто хочет лучше в ней разобраться. У всех свои взаимоотношения с этим предметом, и мне с самого начала хотелось сделать эту книгу доступной для каждого. В связи с этим я старался писать как можно понятнее, но решил, что порой читателю не будет лишним и приложить немного усилий, чтобы действительно разобраться в вопросе. Это значит, что здесь есть и кое-что из настоящей математики: графики, уравнения и расчеты, которые я постараюсь вам разъяснить. Но если вы к такому не готовы и не хотите напрягаться – просто пропускайте эти фрагменты. Жизнь и так слишком коротка.
Введение. Почему умение работать с цифрами – величайшее достижение человечества
В июне 1992 года американский исследователь Питер Гордон посетил деревушку из нескольких хижин, покрытых пальмовыми листьями, на берегу реки Маиси в бразильской Амазонии[1]. Там он встретился с Дэниелом Эвереттом – христианским миссионером, который жил вдали от цивилизации среди народа пирахан. Эверетт рассказал Гордону, что пирахан довольно небрежны в отношении чисел: по сути, они не утруждают себя счетом. Заинтригованный, Гордон приехал разузнать, как такое возможно.
Он решил провести эксперимент с использованием пальчиковых батареек, которые привез с собой. Выкладывая по несколько батареек в линию, он просил пирахан выложить рядом еще одну линию с таким же числом батареек. С линиями из одной, двух и трех батареек они справлялись без труда. Повторить линию из четырех, пяти или шести батареек им было уже сложно. Когда количество батареек возрастало до десяти, задача становилась практически невыполнимой. Аналогичная проблема возникала, когда пирахан просили воспроизвести символы, нарисованные на бумаге. Один-два символа они копировали с легкостью, но больше шести повторить не мог никто. Гордон пришел к выводу, что пирахан вообще не умели работать с цифрами – возможно, потому что у них не было в этом нужды. При их образе жизни мозг просто не находил причин формировать концепцию чисел.
Большинству из нас удивительно, что люди вполне могут обходиться без чисел. Дело в том, что мы сами не отдаем себе отчет в том, насколько глубоко числа укоренились в нашей повседневной жизни. Однако, если не заострять на этом внимание, мы даже не задумываемся о том, что числа лежат в основе нашего образа жизни, наших институтов и нашей инфраструктуры. О чем бы ни зашла речь – о бизнесе, жилье, медицине, политике, войне, сельском хозяйстве, искусстве, путешествиях, науке, технологиях, – почти все аспекты нашего существования зиждятся на математическом фундаменте. И это удивляет лишь сильнее, если осознать, что математики могло и не быть.
От природы мы ничуть не больше других видов способны работать с цифрами[2]. Люди рождаются лишь с тем, что называется “примерным арифметическим мышлением”[3]. Это значит, что в изначальном состоянии человеческий мозг не утруждает себя подсчетами, когда количество единиц чего-либо превышает три. Увидев четыре яблока, ребенок автоматически сочтет, что их “много” или “больше”. От природы мы ведем счет так: “1, 2, 3, больше”. Мозг крыс, шимпанзе, птиц и обезьян также применяет примерную систему счисления. Если вознаградить крысу, когда она пять раз нажмет на рычаг, то она будет время от времени возвращаться к аппарату и нажимать на рычаг примерно пять раз, надеясь снова получить лакомство. Людям удалось обучить шимпанзе выполнять более сложные задачи с числами – например, запоминать последовательности чисел, – и порой шимпанзе справляются с ними лучше, чем неподготовленные взрослые люди. Но в процессе обучения без вознаграждений не обойтись: шимпанзе не станут заниматься математикой в свое удовольствие. Вы тоже пришли к цифрам не сами: вы научились считать под давлением социума. Любопытно, что такое давление проистекает из глубоко укоренившейся в культуре мудрости, которая гласит, что математика – вещь нужная.
Живший в эпоху Тюдоров математик и мистик Джон Ди называл математику “странным соседством сверхъестественного, нетленного, философского, простого и неделимого с естественным, бренным, здравым, сложным и делимым”[4]. Казалось бы, это чепуха, но математика действительно сверхъестественна, поскольку мы применяем ее, чтобы выйти за границы естественного. Развитие математики позволяет нам изучать и разбирать природные закономерности и симметрии и, подобно богам, перестраивать их под собственные нужды. Благодаря математике мы меняем окружающий мир, чтобы нам, людям, жилось лучше. Сперва мы научились считать до четырех, а в итоге обнаружили, что создали цивилизации. Постигая искусство “большего”, наш мозг учится работать со сложными абстракциями. Он осваивается в мире, где числа применимы не только к вещам, требующим счета, но также к фигурам, точкам, линиям и углам, – иными словами, в сфере геометрии. Это наделяет нас способностью воссоздавать – на бумаге, на деревянной сфере или просто в голове – такой огромный и сложный объект, как Земля, и учиться ориентироваться на нем. Мы также можем воссоздавать числа – знакомые и незнакомые нам – в качестве символов и манипулировать ими, чтобы управлять миром и перестраивать его, делая поразительные успехи в упорядочивании, оптимизации и транспортировке. Это, если вы еще не поняли, алгебра. Мы можем даже проводить расчеты, чтобы прогнозировать, какое будущее наступит под действием происходящих вокруг изменений. Эта сфера называется математическим анализом, и она позволяет нам достигать множества целей, от формирования рыночного капитализма до полетов на Луну.
Мы осваиваем эту математику – по крайней мере, как предполагается – на ранних этапах жизни. В школе нас уверяют, что математика – важнейший навык, без которого не обойтись, если мы хотим добиться успеха. И мы покорно, хотя частенько и неохотно, открываем для себя математические инструменты и учимся ими пользоваться. Некоторым это нравится, но большинству – нет. В какой-то момент почти все опускают руки.
Мало кто после этого продолжает изучать математику. В последующие годы обретенные в муках навыки притупляются, и лишь самые базовые из них остаются в нашем распоряжении. Без помощи технологий – например, калькулятора в мобильном телефоне, без которого сегодня не разделишь на компанию ни