Читать интересную книгу Занимательная теория вероятности - Александр Исаакович Китайгородский

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 3 4 5 6 7 8 9 10 11 ... 62
поселке на Дальнем Севере.

Покер у нас мало распространен. Прошу еще раз у читателя извинения, что приходится уделять внимание столь малоуважительному занятию, как разъяснение правил карточной азартной игры покер. Кстати говоря, слово «азарт» приобрело в русском языке новый смысл. Ведь это перевод французского слова hazard, что означает «случай» (до революции писали — азардные игры). Так что азартные игры — это игры, построенные на случае, что звучит уже вполне научно и респектабельно.

Однако вернемся к делу, то бишь к покеру. У каждого игрока по пять карт на руках. Сила карт зависит от того, образуют ли две из них, или три, или четыре, или все пять какую-либо из следующих комбинаций, расположенных нами в порядке: возрастания мощи: пару (скажем, две дамы); две пары (это понятно); тройку (например, три валета); стрит (допустим, десять, валет, дама, король, туз); тройку и пару (это тоже понятно); цвет (все карты одной масти); каре (четыре одинаковые); королевский флеш (одноцветный стрит). В покере картами не ходят. Смысл игры состоит в торговле при закрытых картах, причем эта торговля происходит в два приема. Впрочем, предоставим слово Джеку Лондону.

«Торговаться начали втемную — ставки росли и росли, а о прикупе никто еще и не думал. Карты сдал Кернс. Луи-француз поставил сто долларов. Кэмбл только ответил (то есть поставил столько же. — А. К.), но следующий партнер — Элам Харниш — бросил в котел пятьсот долларов, заметив Макдональду, что надо бы больше, да уж ладно, пусть входит в игру по дешевке. (То есть „всего лишь“ за пятьсот долларов, ибо по правилам игры каждый следующий должен поставить по крайней мере столько же, сколько предыдущий по кругу игрок. — А. К.)

Макдональд еще раз заглянул в свои карты и выложил тысячу. Кернс после длительного раздумья ответил. Луи-француз тоже долго колебался, но все-таки решил не выходить из игры и добавил девятьсот долларов. Столько же нужно было выложить и Кэмблу, но, к удивлению партнеров, он этим не ограничился, а поставил еще тысячу.

— Ну, наконец-то дело в гору пошло, — сказал Харниш, ставя тысячу пятьсот долларов и, в свою очередь, добавляя тысячу, — красотка ждет нас за первым перевалом. Смотрите, не лопнули бы постромки!

— Уж я-то не отстану, — ответил Макдональд и положил в котел на две тысячи своих марок да сверх того добавил тысячу.

Теперь партнеры уже не сомневались, что у всех большая карта на руках».

Хоть и жалко прерывать захватывающее повествование, но нам надо разобраться в происходящем с точки зрения нашей темы.

Решая, участвовать ему в игре или нет, подравнять свою ставку к уже сделанным или поднять ставку повыше, игрок так или иначе оценивает вероятность своего выигрыша. (Блеф в крупной игре исключен; в конечном счете при крупной игре всех партнеров не запугаешь, и они не бросят карты, махнув рукой на уже попавшую в котел ставку, а когда их придется открыть, то выиграет тот, чья карта сильнее.)

Разумеется, практически игроки не вычисляют значение вероятности выигрыша и руководствуются лишь опытом. Но если опыт большой, то одно сводится к другому: игрок подсознательно решает сложную задачу, определяя вероятность того, что на руках партнеров находятся комбинации более высокие, чем у него. Кроме того, в первом туре торговли он учитывает, насколько «прикупной» является карта.

Но не будем останавливаться на доприкупной ситуации. Подсчет шансов на выигрыш здесь слишком затруднителен, и, главное, на этой стадии игры рисковый или осторожный характер партнеров являются неизвестными величинами, которые мешают решить уравнение.

Пропускаем две страницы романа. Двое игроков выходят из игры, считая свои шансы на выигрыш ничтожными. Остаются трое. Первый тур торговли завершен, то есть ни один из оставшихся трех игроков не желает рисковать большей суммой до прикупа.

«Прикуп состоялся в гробовой тишине, прерываемой только тихими голосами играющих. В котле набралось уже тридцать четыре тысячи, а до конца игры еще было далеко… Харниш отбросил восьмерки и, оставив себе только трех дам, прикупил две карты…

— Тебе? — спросил Кернс Макдональда.

— С меня хватит, — последовал ответ.

— А ты подумай, может, все-таки дать карточку?

— Спасибо, не нуждаюсь.

Сам Кернс взял себе две карты, но не стал смотреть их. Карты Харниша тоже по-прежнему лежали на столе рубашкой вверх.

— Никогда не надо лезть вперед, когда у партнера готовая карта на руках, — медленно проговорил он, глядя на трактирщика. — Я — пас. За тобой слово, Мак.

Макдональд тщательно пересчитал свои карты, чтобы лишний раз удостовериться, что их пять, записал сумму на клочке бумаги, положил его в котел и сказал:

— Пять тысяч.

Кернс под огнем сотни глаз посмотрел свой прикуп, пересчитал три остальные карты, чтобы все видели, что всех карт у него пять, и взялся за карандаш.

— Отвечаю, Мак, — сказал он, — и набавлю только тысчонку, не то Харниш испугается.

Все взоры опять обратились на Харниша. Он тоже посмотрел прикуп и пересчитал карты.

— Отвечаю шесть тысяч и набавляю пять…»

Итак, один из партнеров остался при своей карте. Ясно, что у него комбинация из четырех или пяти карт, и притом сильная, то есть никак не ниже «цвета». Очевидно также, что у обоих партнеров, поменявших две карты, на руках каре. Действительно, если бы к своей тройке они не купили бы такую же четвертую карту, то бросили бы свои карты, спасовали.

Каждый из игроков подсознательно, на основе опыта, может оценить вероятность того, что у партнеров на руках более крупная карта, чем у него, и соответственно вести торговлю, учитывая, кроме того (вот здесь-то расчеты нам не помогут), характер партнеров.

После нескольких туров торговли никто из игроков не желает рисковать большими суммами, и наступает кульминационный момент игры.

«Ни один из игроков не потянулся за котлом, ни один не объявил своей карты. Все трое одновременно молча положили карты на стол; зрители бесшумно обступили их еще теснее, вытягивая шеи, чтобы лучше видеть. Харниш открыл четырех дам и туза; Макдональд — четырех валетов и туза; Кернс — четырех королей и тройку. Он наклонился вперед и, весь дрожа, обеими руками сгреб котел и потащил его к себе».

Игра окончена, и мы можем перейти к математическим комментариям. Можно не сомневаться, что герои Джека Лондона теории вероятностей не знали и не производили в уме математических подсчетов для выработки своей игровой политики. Но действовали они в полном согласии с теорией.

Обратите внимание на одну интересную деталь игры. Два игрока меняли две карты из пяти. С очень большой уверенностью можно предполагать, что они прикупали к трем одинаковым, рассчитывая набрать

1 ... 3 4 5 6 7 8 9 10 11 ... 62
На этом сайте Вы можете читать книги онлайн бесплатно русская версия Занимательная теория вероятности - Александр Исаакович Китайгородский.
Книги, аналогичгные Занимательная теория вероятности - Александр Исаакович Китайгородский

Оставить комментарий