Читать интересную книгу Занимательная теория вероятности - Александр Исаакович Китайгородский

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 62
нельзя выиграть в рулетку? Да нет. Конечно, можно. И мы легко подсчитаем вероятность выигрыша. Для простоты положим, что игрок пробует свое счастье каждый день. Ровно в 18.00 он появляется в казино и ставит пять раз по франку на красное.

За год игры герой встретится со всеми возможными вариантами красного и черного (точнее, не красного, так как и зеро мы отнесем к черному). Вот эти варианты:

ккккк чкккк кчккк ккчкк кккчк ккккч

ччччч кчччч чкччч ччкчч чччкч ччччк

ччккк кччкк ккччк кккчч чкчкк кчкчк

ккчкч чккчк кчккч чкккч ккччч чккчч

ччккч чччкк кчкчч чкчкч ччкчк кччкч

чкччк кчччк

Как видно, их всего 32 варианта. Один из них содержит пять к, пять — состоят из четырех к, десять — из трех к. Разумеется, те же числа будут и при подсчете черных случаев (ч).

Из составленной таблички мы сейчас увидим все «секреты» рулетной игры. Будем считать, что в году 320 дней рабочих и полтора месяца выходных: работа ведь нелегкая — сплошная трепка нервов. Количество дней с разными выигрышами и проигрышами получается от умножения на 10 числа различных комбинаций, приведенных в таблице. Таким образом, счастливых дней в «среднем» году будет десять. Но зато столько же будет «черных» дней сплошного проигрыша. На число «хороших» дней, когда фортуна откажет лишь один раз, придется столько же дней неудачных, когда лишь один раз появится красный цвет, — их будет пятьдесят. Чаще всего — по сто дней — мы встретимся со случаями, когда выигрышей выпадет три, а проигрышей — два, или наоборот, когда проигрышей три, а выигрышей — два.

Пока результат нашего сражения с рулеткой нулевой. Так что занятие можно было бы считать безобидным, если бы не упомянутое зеро. Мы говорили, что вероятность красного цвета не 1/2, а 18/37. Поэтому проигрыши и выигрыши в среднем не уравновесятся, и год закончится с убытком для клиентов, поскольку число грустных дней для них будет несколько превышать число радостных. Например, вероятность полностью «красного» дня равна 18/37 в пятой степени, а сплошь «черного» — 19/37 в пятой степени. Если вы не поленитесь заняться арифметикой, то найдете, что эти вероятности равны соответственно 0,027 и 0,036. Это значит, что один «красный» день в среднем приходится уже не на 32 дня, а на 36, а один «черный» будет встречаться через 28 дней.

Я полностью отдаю себе отчет, что все эти доказательства о проигрыше «в среднем» не подействуют на азартного игрока. Из наших чисел он прежде всего обратит внимание на то, что все-таки десяток «красных» дней на год приходится. Кто его знает, подумает он, может быть, именно сегодняшний день и будет таким! Хорошо бы было, если бы этот день оказался для него «черным». Он отбил бы у него охоту к играм, и на этом он наверняка выиграл бы, дело это добром никогда не кончается.

А теперь оставим моральные поучения, к которым азартные игроки, скорее всего, глухи, и рассмотрим еще несколько рулеточных проблем.

Стоит, пожалуй, обсудить вопрос о «счастливом месяце».

«В этот летний месяц, — прочитал я в воспоминаниях какого-то любителя острых ощущений, — мне здорово везло. За весь месяц я проиграл лишь два раза, не пропустив ни одного дня».

Для простоты будем считать, что вероятность выигрыша равна одной второй (1/2). Тогда так же, как при составлении таблички к и ч, можно подсчитать вероятности появления «черных» дней за месяц. Что же окажется?

Выигрывать 29 и 30 дней в месяц совершенно немыслимо; 28 выигрышных дней имеют вероятность одну миллионную долю; выигрывать 27 дней в месяц можно с шансом одна стотысячная; 26 дней — одна пятнадцатитысячная; 25 дней — одна трехтысячная и 24 выигрышных дня осуществляются с вероятностью в одну тысячную. Лишь это число может внушить мне доверие к автору упомянутого мемуара. Что же касается случая, когда число «красных» дней по крайней мере в два раза больше «черных» (двадцать и десять), то это уже вполне реальная вещь, ибо соответствующая вероятность равна одной десятой. Тот, кто играет всю свою жизнь, переживал такие счастливые месяцы, но… не надо забывать, что ему пришлось претерпеть такое же число несчастливых месяцев.

Игроки в рулетку (или в другие игры, где ни расчет, ни психологический анализ «не работают») могут быть поделены на два семейства. Одни играют как попало или по приметам. Скажем, сегодня двадцать третье число, рассуждает такой игрок, это день рождения моей невесты, значит, число двадцать три принесет мне счастье. Или, думает другой, среди игроков есть некто, которому сегодня дико везет, — играю как он. И так далее до бесконечности.

Другая группа игроков пытается уловить систему. Разумеется, в этом деле никакой системы нет и быть не может. Такова уж природа случая. И тем не менее я нисколько не сомневаюсь, что по мере роста серии ккккк… число игроков, ставящих на «черное», будет непрерывно расти. «А как же иначе, — обычно рассуждают они, — ведь длинные серии одинакового цвета встречаются значительно реже. Значит, после пяти или шести „красных“ уж наверное появится „черное“».

Абсурдность этого рассуждения очевидна. Оно противоречит очень простой мысли: у рулетки нет памяти, рулетка не знает, что было раньше, и перед каждым броском шарик все прошлое стирает. А если так, то перед каждым броском (даже и таким, который следует после двадцати «красных») вероятность «черного» и «красного» одинакова.

Правильно? Вы не находите аргументов против этого простого рассуждения? Да их и нет.

— Позвольте, — вмешивается читатель, которого назовем рассеянным, — вы же сами писали, что длинные серии бывают редко. И чем они длиннее, тем реже выпадают.

— Ну и что же? — поддерживает автора читатель внимательный. — Это не имеет ни малейшего отношения к утверждению, что у рулетки отсутствует память.

— То есть как не имеет? — сердится рассеянный читатель. — Пять «красных» бывает реже, чем четыре, а шесть реже, чем пять. Значит, если я ставлю на «черное» после того, как «красное» вышло четыре раза подряд, я и следую теории вероятностей, которую автор пытается нам втолковать.

— Нет, не следуете. Серий из пяти «красных» ровно столько же, сколько из четырех «красных» подряд и одного «черного»: ккккк и ккккч имеют равные вероятности.

— Как так?! Ведь автор говорил пять «красных» бывает реже, чем четыре «красных»?

— Нет, мой дорогой, автор говорил не так. Из пяти игр появление «красного» цвета пять раз реже, чем появление четыре раза «красного» из пяти в любом порядке. Вы лучше вернитесь

1 2 3 4 5 6 7 8 9 10 ... 62
На этом сайте Вы можете читать книги онлайн бесплатно русская версия Занимательная теория вероятности - Александр Исаакович Китайгородский.
Книги, аналогичгные Занимательная теория вероятности - Александр Исаакович Китайгородский

Оставить комментарий