Шрифт:
Интервал:
Закладка:
Если относиться к телу как к проекту, то возвратный гортанный нерв — настоящий позор проектировщика. Гельмгольц нашел бы куда больше поводов его отвергнуть, чем в отношении глаза. Однако положение возвратного гортанного нерва, как и глаза, становится понятным и естественным, если забыть о проектировщике и задуматься об истории. Для этого нам придется вернуться в эпоху, когда наши предки были рыбами. У рыб двухкамерное сердце, в отличие от нашего четырехкамерного. Оно посылает кровь в большую центральную артерию под названием «брюшная аорта». Затем кровь поступает к жабрам, где насыщается кислородом. Брюшная аорта перед жабрами делится на шесть пар сосудов, ведущих к шести отделам жабр с каждого бока. На выходе из жабр кровь собирается в другие шесть пар сосудов, которые соединяются в спинную артерию. Оттуда кровь поступает к органам тела. Шесть пар жаберных артерий — наследие сегментации тела позвоночных, которая куда более очевидна в строении тела рыб, чем человека. Удивительно, что и у людей она также видна, но лишь на стадии эмбриона, когда можно по деталям строения различить жаберные дуги — очевидное наследие предков. Они, конечно, не действуют, но пятинедельный эмбрион вполне можно считать маленькой розовой рыбкой. Я не перестаю удивляться, почему дельфины, киты, дюгони и ламантины снова не обзавелись функционирующими жабрами. У них, как и у всех млекопитающих, имеется хороший эмбриональный задел, который, казалось бы, упрощает задачу. Однако они этого не сделали. Этому, конечно, должна быть причина, известная какому-либо зоологу (или, если не причина, то хотя бы способ ее найти).
Тело всех позвоночных имеет сегментированный план строения, но у взрослых млекопитающих, в отличие от эмбриона, эта сегментированность очевидна только в спинном отделе, в котором позвоночник, ребра, кровеносные сосуды, мышечные сегменты (миотомы) и нервы образуют следующие друг за другом модули. Каждый отдел позвоночного столба снабжен двумя большими нервами, отходящими по сторонам спинного мозга (так называемые передний и задний корешки). Основные функции этих нервов сосредоточены вблизи позвоночника, но некоторые из них дотягиваются до ног или рук.
Голова и шея также организованы посегментно, но их трудно различить даже у рыб, потому что, в отличие от аккуратно выстроенного ряда позвоночных сегментов, за время эволюции они перемешались. Обнаружение следов сегментации головы — один из триумфов сравнительной анатомии и эмбриологии XIX–XX веков. Например, первая жаберная дуга бесчелюстных рыб, таких как миноги (и эмбрионов челюстных позвоночных), точно соответствует челюстям у челюстноротых позвоночных (то есть всех современных позвоночных, кроме миног и миксин).
Тело насекомых и других членистоногих животных, например, ракообразных, о которых мы говорили в главе 10, также сегментировано. И опять-таки триумфально звучало доказательство того, что голова любого насекомого состоит из шести сегментов (конечно, перемешанных), которые у отдаленных предков были организованы, как остальные части тела, в виде модулей. Триумфом эмбриологии и генетики конца XX века стало доказательство того, что сегментная организация насекомых и позвоночных далеко не независима, как меня когда-то учили: она строится под управлением сходных наборов генов (Hox-генов), а эти гены у насекомых и позвоночных (и других животных) на хромосомах даже расположены сходным образом. Никто из моих преподавателей, рассказывавших о физиологии насекомых и позвоночных, и не помышлял об этом! Оказалось, что такие разные животные, как позвоночные и насекомые, значительно ближе друг к другу, чем мы думали. И причина этого, конечно, — общие предки. План, заложенный в Hox-генах, был намечен еще в общем предке всех животных с двусторонней симметрией. И все они оказались куда более близкими родственниками, чем можно было представить.
Возвратимся к голове позвоночных. Черепные нервы считаются хорошо замаскированными потомками сегментных, с которых у наших примитивных предков начиналась череда передних и задних корешков спинного мозга, подобных тем, что растут из нашего позвоночника. А основные кровеносные сосуды нашей грудной клетки — это реликты когда-то отчетливо сегментированной системы кровеносных сосудов, питающих жабры. Можно сказать, что в грудной клетке млекопитающих смешалась сегментированная жаберная система предков-рыб так же, как в голове рыбы перепутаны сегменты еще более далеких позвоночных предков.
Кровеносная система человеческого эмбриона также обслуживает «жабры», очень похожие на рыбьи. Она включает две брюшные аорты, по одной с каждой стороны, дуги аорты (посегментно, по одной на каждую «жабру» с каждой стороны), которые соединяются с парными спинными аортами. Большая часть этой реликтовой кровеносной системы исчезает к концу эмбрионального развития, однако видно, что кровеносная система взрослых происходит от эмбриональной. Кровеносная система эмбриона на 26 день подает кровь к «жабрам» точно так же, как у рыб. Далее кровеносная система утрачивает сегментацию и исходную симметрию, а к моменту рождения кровеносная система уже обладает ярко выраженной левосторонней асимметрией, совсем не похожей на стройную симметрию эмбриона-рыбки.
Жаберные дуги человеческого эмбриона
Не будем углубляться в то, наследием каких шести жаберных артерий являются наши грудные артерии. Все, что нам нужно для понимания истории возвратного гортанного нерва, — что у рыб блуждающий нерв посылает ветви к трем задним жабрам, и для них вполне естественно проходить под соответствующими жаберными артериями. У этих нервов нет никакой возвратности, они идут к своим органам-целям кратчайшим и самым естественным путем.
Однако в ходе эволюции млекопитающие обзавелись шеей (у рыб она отсутствует) и расстались с жабрами, которые частично превратились в такие полезные органы, как щитовидная, паращитовидная железы и другие составляющие гортани. Все эти детали снабжались кровью и соединялись нервами, которые в прошлом обслуживали жабры. По мере того как предки млекопитающих, эволюционируя, удалялись от рыб, нервы и кровеносные сосуды вытягивались и удлинялись в самых неожиданных направлениях, что изменило их первоначальное расположение. Грудная клетка и шея высших позвоночных превратились в мешанину, мало напоминающую симметричное упорядоченно сериальное строение рыбьих жабр. И возвратные нервы гортани — составная часть, более чем просто несуразная, этого искажения.
Гортанный нерв у жирафа и акулы
На рисунке из учебника Берри и Холлема 1986 года видно, что у акулы возвратность гортанного нерва отсутствует. В качестве иллюстрации этого долгого вояжа у млекопитающих они выбрали… жирафа.
У людей лишний путь возвратного нерва не превышает десяти сантиметров. Для жирафа же это нешуточное (измеряется метрами) дело: у взрослого животного нерв бежит лишних четыре метра. В 2009 году, назавтра после празднования Дня Дарвина (двухсотая годовщина со дня его рождения), группа анатомов и ветеринаров из лондонского Королевского ветеринарного колледжа пригласила меня принять участие во вскрытии трупа молодого жирафа, погибшего в зоопарке. Это было очень похоже на театр, в котором сцена отделялась стеклянной стеной от зала. Целый день студенты (очень необычно для студентов), а также я сам и съемочная группа Четвертого канала наблюдали за операцией, ход которой анатомы комментировали в микрофон. Тело жирафа лежало на большом секционном столе, одна нога была поднята специальной растяжкой, а огромная шея — ярко освещена. Все участники представления, находящиеся около жирафа, надели оранжевые комбинезоны и белые тапочки. Это подчеркнуло фантастичность сцены.
В доказательство длины обходного пути гортанного нерва замечу, что анатомы, работавшие над разными его участками — около головы, у обхода возле сердца, на остальных участках, — не мешали друг другу. Они не торопясь прошли вдоль всего возвратного нерва. Эта непростая задача не давалась никому со времен великого анатома Ричарда Оуэна, который решил ее в 1837 году. Сложность задачи связана еще и с тем, что нерв очень тонок, а на обходе вообще толщиной с нитку (я это знал, но, увидев, все-таки удивился), и его легко потерять в сплетении пленок и мышц, окружающих дыхательное горло. Спускаясь, нерв, упакованный на этом отрезке вместе с блуждающим, проходит в нескольких дюймах от гортани — конечного пункта маршрута. Тем не менее нерв спускается дальше, поворачивает и проделывает обратный путь. Меня впечатлило мастерство профессоров Грэма Митчелла, Джой Райденберг и других специалистов, проводивших вскрытие, а мое уважение к Оуэну, язвительному критику Дарвина, заметно выросло. Правда, креационист Оуэн упустил очевидное: любой разумный дизайнер отделил бы гортанный нерв, заменив несколькими сантиметрами путешествие в несколько метров.
- Происхождение эволюции. Идея естественного отбора до и после Дарвина - Джон Гриббин - Биология / Зарубежная образовательная литература
- Нерешенные проблемы теории эволюции - В. Красилов - Биология
- Назад на Землю. Что мне открыла жизнь в космосе о нашей родной планете и о миссии по защите Земли - Николь Стотт - Биографии и Мемуары / Биология / Прочая научная литература
- Лестница жизни: десять величайших изобретений эволюции - Ник Лэйн - Биология
- Как использовать возможности мозга. Знания, которые не займут много места - Коллектив авторов - Биология / Медицина