Шрифт:
Интервал:
Закладка:
Подобные симуляции, математически отображающие некоторые аспекты внешней физической реальности, делают это приближенно. Пространство-время, конечно, не состоит из грубых вокселов, которые применяются для моделирования погоды, и это одна из причин, по которой метеорологические прогнозы часто неточны. И все же мысль, что с каждой точкой пространства-времени связана группа чисел, весьма глубока, и, я думаю, она кое-что говорит нам не только о нашем описании реальности, но и о самой реальности. Одно из фундаментальных понятий современной физики, поле, устроено именно так: это нечто, представимое числами в каждой точке пространства-времени. Например, существует поле температур, соответствующее воздуху вокруг нас: в каждой точке имеется строго определенная температура, не зависящая от любых изобретенных человеком вокселов, и ее значение можно измерить с помощью термометра (или пальца, если не требуется высокой точности). Существует также поле давления: в каждой точке есть число, выражающее давление – его можно измерить барометром или своими ушами, которые начинают болеть, если это число сильно отклоняется от нормы, а также воспринимают звук, если давление колеблется во времени.
Сейчас известно, что ни то, ни другое поле не является истинно фундаментальным: они, по сути, показывают, как быстро в среднем движутся молекулы воздуха, и их числа перестают быть четко определенными, если попытаться измерить их в субатомных масштабах. Однако существуют другие поля, которые кажутся фундаментальными, образующими часть ткани нашей внешней физической реальности. Магнитное поле определяется не одним (как температура), а тремя числами в каждой точке пространства-времени, задающими его величину и направление. Вы, вероятно, измеряли магнитное поле с помощью компаса, наблюдая, как его стрелка устанавливается вдоль магнитного поля Земли, направленного к северу. Стрелка выравнивается быстрее, если магнитное поле сильнее – например вблизи магнитно-резонансного томографа. Другой пример – электрическое поле, которое также представляется тремя числами, задающими его величину и направление. Простой способ измерить его – по силе, с которой оно действует на заряженный объект, например, когда ваши волосы электрически притягиваются к пластмассовой расческе. Электрическое и магнитное поля можно элегантно объединить в электромагнитное поле (представляется шестью числами в каждой точке пространства-времени). Свет – это волны, бегущие по электромагнитному полю (гл. 7), и если наш физический мир – это математическая структура, то весь свет во Вселенной (который кажется нам физическим) связан с шестью числами в каждой точке пространства-времени (чисто математической сущностью). Эти числа подчиняются математическим соотношениям – уравнениям Максвелла (рис. 10.4).
Следует сделать оговорку: то, что я сейчас описал, соответствует пониманию электричества, магнетизма и света в классической физике. Квантовая механика усложняет картину (но не делает ее менее математической), заменяя классический электромагнетизм квантовой теорией поля – основанием всей современной физики элементарных частиц. В квантовой теории поля волновая функция задает степень, в которой является реальной любая возможная конфигурация электрического и магнитного полей. Волновая функция сама по себе математический объект, абстрактная точка в гильбертовом пространстве.
Квантовая теория поля утверждает (гл. 7), что свет состоит из частиц, называемых фотонами. Грубо говоря, числа, составляющие электрическое и магнитное поля, могут рассматриваться как информирующие о числе фотонов в каждый момент в каждом месте. Так же, как есть электромагнитное поле, напряженность которого соответствует числу фотонов в каждый момент в каждом месте, существуют и другие поля, соответствующие прочим известным элементарным частицам. Например, напряженность электронного поля и напряженность кваркового поля связаны с числом электронов и кварков в каждый момент времени в каждом месте. В классической физике все движения всех частиц в пространстве-времени соответствуют набору чисел в каждой точке четырехмерного математического пространства – математической структуре. В квантовой теории поля волновая функция задает степень, в которой является реальной любая возможная конфигурация каждого из этих полей.
Физики еще не нашли математическую структуру, которая описывала бы все аспекты реальности, включая гравитацию (гл. 7). Но пока нет признаков того, чтобы теория струн или другой кандидат на роль такого описания был бы менее математическим, чем квантовая теория поля.
Описание или эквивалентность?
Прежде чем идти дальше, необходимо разобраться с важным семантическим моментом. Большинство моих коллег-физиков скажет, что внешняя физическая реальность (по крайней мере приближенно) описывается математикой. Я же утверждаю, что внешняя физическая реальность является математикой, точнее, математической структурой.
Все, о чем до сих пор шла речь в этой главе, предполагает, что нашу внешнюю физическую реальность можно описать математической структурой. Если в учебнике физики появится долгожданная «теория всего» (ТВ), ее уравнения будут полностью описывать математическую структуру, которая является внешней физической реальностью. Я использую здесь слово «является», а не «соответствует», поскольку, если две структуры эквивалентны, то (как подчеркивал израильский профессор Мариус Коэн[74]) не существует осмысленного контекста, в котором они не являются одним и тем же. Вспомните мощное математическое понятие эквивалентности из гл. 10, которое охватывает самую суть математических структур: если два полных описания эквивалентны, то они описывают одну и ту же вещь[75]. Это означает, что если некие математические уравнения описывают и нашу внешнюю физическую реальность, и математическую структуру, то наша внешняя физическая реальность и эта математическая структура есть одно и то же. И тогда верна гипотеза математической Вселенной: наша физическая реальность является математической структурой.
Вспомните, что две математические структуры эквивалентны, если можно попарно связать их сущности так, чтобы сохранялись все отношения. Если вы можете таким образом спарить каждую сущность нашей внешней физической реальности с соответствующей сущностью в математической структуре (например, «данное значение напряженности электрического поля в данной точке физического пространства соответствует данному числу в математический структуре»), то наша внешняя физическая реальность соответствует определению того, что значит быть математической структурой. Фактически она и есть эта математическая структура.
В гл. 10 мы видели, что если хочется избежать принятия гипотезы математической Вселенной, то можно отбросить гипотезу внешней реальности, утверждающую, что существует внешняя физическая реальность, полностью независимая от людей. Можно затем утверждать, что Вселенная почему-либо оказалась состоящей из материи, идеально описываемой математической структурой, но она имеет и другие свойства, которые этой структурой не описываются и вообще не могут быть описаны абстрактным, свободным от «багажа», независимым от человека способом. Однако, думаю, эта точка зрения заставила бы перевернуться в гробу Карла Поппера (гл. 6), который подчеркивал: научные теории должны иметь наблюдаемые проявления. В то же время, поскольку математическое описание по нашему допущению является идеальным, отвечающим за все, что может наблюдаться, все дополнительные украшения, которые могли бы сделать нашу Вселенную нематематической, по определению не имели бы наблюдательных проявлений и поэтому были бы совершенно ненаучны.
Кто вы?
Итак, мы видим, что пространство-время и находящаяся в нем материя могут рассматриваться как часть математической структуры. Но что можно сказать о нас? Наши мысли, эмоции, самосознание и это глубокое экзистенциальное чувство я существую – ни одно из этих ощущений не является для меня ни в малейшей степени математическим. И все же мы сложены из элементарных частиц тех же типов, что и все остальное в нашем физическом мире, который является чисто математическим. Как все это увязать?
Я думаю, мы еще не вполне понимаем, что представляем собой. Более того, нам не требуется полностью раскрывать загадку сознания (гл. 9) для того, чтобы понять внешнюю физическую реальность. Тем не менее в современной физике есть соблазнительные возможности изучения самих себя.
«Коса» жизни
Георгий Гамов озаглавил автобиографию «Моя мировая линия». Этим выражением пользовался и Эйнштейн для обозначения пути по пространству-времени. Однако ваша собственная мировая линия, строго говоря, не является линией: она не прямая и имеет ненулевую толщину.
- Квантовый кот вселенной - Эрвин Шредингер - Прочая научная литература
- Сто пятьдесят три - Игорь Юсупов - Прочая научная литература / Прочая религиозная литература / Справочники
- Голографическая Вселенная - Майкл Талбот - Прочая научная литература