Шрифт:
Интервал:
Закладка:
Рассмотрим подробнее, как мы описываем абстрактные сущности. Прежде всего описание должно быть конкретным, так что нужно изобрести объекты, слова, символы, соответствующие абстрактной идее. Так, в Соединенных Штатах шахматную фигуру, которая ходит по диагонали, мы называем bishop («епископ»). Во-вторых, очевидно, что это название произвольно и другие были бы ничуть его не хуже. В самом деле, эта фигура называется fou («дурак») по-французски, strelec («стрелок») по-словацки, löpare («бегун») по-шведски, fil («слон») по-персидски. Можно, однако, согласовать уникальность Бессмертной партии с множественностью ее возможных описаний, используя сильную идею эквивалентности:
1. Мы определим, что имеется в виду под эквивалентностью двух описаний.
2. Мы будем говорить, что если два описания эквивалентны, то они описывают одну и ту же вещь.
Любые слова, понятия или символы, которые появляются в некоторых, но не во всех эквивалентных описаниях, очевидно, являются необязательными, а значит, относятся к «багажу». Но если мы хотим определить сущность Бессмертной партии, сколько «багажа» мы можем выбросить? Очевидно, много: компьютеры способны играть в шахматы, не имея никакого представления о человеческом языке или понятиях вроде цвета, текстуры, размеров и названий фигур. Чтобы до конца понять, как далеко мы можем зайти, необходимо дать более строгое определение эквивалентности:
Два описания эквивалентны, если между ними существует соответствие, которое сохраняет все отношения.
В шахматах используются абстрактные сущности (фигуры и поля на доске) и отношения между ними. Одно из отношений, которое фигура может иметь с полем, заключается в том, что первая стоит на втором. Другое отношение, которое фигура может иметь к полю, состоит в том, что ей позволено на него переместиться. Две центральные иллюстрации на рис. 10.6, согласно нашему определению, эквивалентны: между трехмерными и двумерными фигурами и досками существует соответствие, так что любой трехмерной фигуре, стоящей на определенном поле, соответствует двумерная фигура на соответствующем поле. Аналогично, описание шахматной позиции, выраженное лишь в словах английского языка, эквивалентно описанию, выраженному лишь в словах испанского языка, если имеется словарь, описывающий соответствие между английскими и испанскими словами, и если его применение при переводе описания на испанском дает описание на английском.
Когда газеты или веб-сайты публикуют шахматные партии, они обычно используют еще одну эквивалентную форму описания – так называемую алгебраическую шахматную нотацию (рис. 10.6, справа). Здесь фигуры обозначены не предметами или словами, а буквами (слон, например, эквивалентен «С»), а поля представляются буквой, задающей вертикаль, и цифрой, указывающей горизонталь. Поскольку абстрактное описание партии на рис. 10.6 (справа) эквивалентно ее описанию в форме видеозаписи игры на физической доске, все, что есть в последней форме описания, но не имеет соответствия в первой, является «багажом» – от физического существования доски до формы, цвета и названий фигур. Даже особенности алгебраической шахматной нотации выступают «багажом»: когда в шахматы играют компьютеры, они обычно пользуются иными абстрактными описаниями позиций, представляющими собой схемы из нулей и единиц в памяти. Так что остается после того, как мы избавляемся от «багажа»? Что именно описывается эквивалентными описаниями? Бессмертная партия, на 100 % очищенная.
«Багаж» и математические структуры
Разобранный случай с абстрактными шахматными фигурами, полями на доске и отношениями между ними – это пример гораздо более общего понятия – математической структуры. Это стандартное понятие в современной математической логике. В гл. 12 я приведу более строгое описание, а пока вполне достаточно неформального определения:
Рис. 10.7. Три эквивалентных описания одной и той же математической структуры, которую математики назвали бы ориентированным графом с четырьмя элементами. Каждое описание содержит некий произвольный «багаж», но структура, которую все они описывают, на 100 % свободна от «багажа»: ее четыре сущности не имеют свойств, кроме отношений между ними, а эти отношения не имеют свойств, кроме информации о том, какие элементы они связывают.
Математическая структура – это набор абстрактных сущностей с отношениями между ними.
Рассмотрим несколько примеров. На рис. 10.7 (слева) описываются математические структуры с четырьмя сущностями, связанными между собой отношением нравится. Сущность Филипп представлена изображением с множеством внутренних свойств, таких, например, как цвет волос. Напротив, сущности математических структур совершенно абстрактны, что предполагает отсутствие у них каких бы то ни было внутренних свойств. Это значит, что какие бы символы мы ни использовали для их представления, это будут лишь метки, свойства которых не имеют отношения к делу: во избежание ошибочного приписывания свойств этих символов абстрактным сущностям, обозначением которых они являются, рассмотрим более аскетичное описание, представленное на среднем рисунке. Оно эквивалентно первому, поскольку, если установить соответствие согласно следующему словарю: Филипп = 1, Александр = 2, лыжи = 3, скейтборд = 4, нравится = R, все отношения сохранятся. Так, «Александру нравится скейтборд» превратится в «2 R 4», а такое отношение на среднем рисунке действительно есть.
Математические структуры можно описывать точно так же, как шахматные партии, лишь при помощи символов. Так, в правой части рис. 10.7 представлено третье эквивалентное описание нашей математической структуры с помощью числовой таблицы четыре на четыре. В таблице значение 1 указывает, что отношение (нравится) имеет место между элементом, соответствующим данной строке, и элементом, соответствующим данному столбцу. Скажем, тот факт, что в третьей колонке первой строки стоит 1, означает, что «Филиппу нравятся лыжи». Очевидно, что существует гораздо больше эквивалентных способов описания математической структуры. Но есть лишь одна уникальная математическая структура, которая описывается всеми этими способами. Итак, любое конкретное описание математической структуры несет «багаж», но сама структура его не содержит. Важно не путать описание с тем, что именно описывается: даже кажущееся наиболее абстрактным описание математической структуры не является самой этой структурой. Правильнее сказать, что структуре соответствует класс всех эквивалентных ее описаний. В табл. 10.2 дана сводка отношений между этими и иными ключевыми понятиями, связанными с идеей математической Вселенной.
Симметрия и другие математические свойства
Некоторые математики любят поспорить о том, что такое математика, и по этому вопросу, конечно, нет единого мнения. Однако, согласно популярному определению, математика – это «формальное изучение математических структур». Следуя этим путем, математики выявили большое число интересных математических структур – от хорошо всем знакомых, вроде куба, икосаэдра (рис. 7.2) и целых чисел, до экзотических, вроде банаховых пространств, орбиобразий и псевдоримановых многообразий.
Одна из наиболее важных задач математиков при изучении математических структур – это доказательство теорем об их свойствах. Но что за свойства может иметь математическая структура, если ее сущностям и отношениям не позволено иметь никаких внутренних свойств?
Рассмотрим математическую структуру, описанную в левой части рис. 10.8. Между входящими в нее сущностями нет никаких отношений, так что нет ничего, что позволило бы отличить одну из этих сущностей от любой другой. Значит, данная математическая структура не имеет никаких свойств, кроме мощности – числа сущностей в ней. Математики называют эту математическую структуру «множеством из восьми элементов», и единственное ее свойство – наличие восьми элементов. Весьма скучная структура!
Рис. 10.8. Средний рисунок описывает математическую структуру с восемью элементами (символически изображенными в виде точек) и связями между ними (символически изображенными в виде линий). Вы можете интерпретировать эти элементы как вершины куба, а отношения как указание, какие вершины соединяются ребрами. Но эта интерпретация – совершенно необязательный “багаж”: в правой части представлено эквивалентное описание той же математической структуры без использования какой-либо графики или геометрии. Например, тот факт, что на пересечении пятого столбца и шестой строки стоит 1, означает наличие отношения между элементами 5 и 6. Данная математическая структура имеет много интересных свойств, например зеркальную симметрию и некоторые вращательные симметрии. А математическая структура, описываемая левым рисунком, не содержит отношений и интересных свойств, кроме своей мощности, равной 8, числу элементов, которое в нее входит.
- Квантовый кот вселенной - Эрвин Шредингер - Прочая научная литература
- Сто пятьдесят три - Игорь Юсупов - Прочая научная литература / Прочая религиозная литература / Справочники
- Голографическая Вселенная - Майкл Талбот - Прочая научная литература