Insoo Hyun, Megan Munsie, Rosario Isasi. Debate Ethics of Embryo Models from Stem Cells. Nature 564 (2018): 183-185. Doi: 10.1038/d41586-018-07663-9.
[20] I. Martyn, T. Y. Kanno, A. Ruzo, E. D. Siggia, A. H. Brivanlou. Self-Organization of a Human Organizer by Combined Wnt and Nodal Signalling. Nature 558 (2018): 132-135. Doi: 10.1038/s41586-018-0150-y.
[21] John Aach, Jeantine Lunshof, Eswar Iyer, George M. Church. Addressing the Ethical Issues Raised by Synthetic Human Entities with Embryo-Like Features. eLife 6 (2017): e20674. URL: https:// elifesciences.org/articles/20674, doi: 10.7554/eLife.20674.
[22] H. C. Ott, T. S. Matthiesen, S.-K. Goh, L. D. Black, S. M. Kren, T. I. Netoff, D. A. Taylor. Perfusion-Decellularized Matrix: Using Nature’s Platform to Engineer a Bioartificial Heart. Nature Medicine 14 (2008): 213-221. Doi:10.1038/nml684.
[23] Rivron et al. Debate Ethics of Embryo Models, 183—185.
Глава 10. Новая эра синтетической биологии
[1] 3D Atlas of Human Embryology, Carnegie Stage 7, accessed April 5, 2019. URL: http://3datlas.3dembryo.nl/3DAtlas_CS07-8752-v2016-03.pdf; 3D Atlas of Human Embryology, Carnegie Stage 23, accessed April 5, 2019. URL: http://3datlas.3dembryo. nl/3 DAtlas_CS23-9226-v2016-03.pdf; 3D Atlas of Human Embryology, accessed April 5, 2019. URL: www.3dembryoatlas.com/.
[2] В. S. de Ваккег, К. Н. de Jong, J. Hagoort, К. de Bree, С. T. Besselink, F. E. C. de Kanter, T. Veldhuis, B. Bais, R. Schildmeijer, J. M. Rui-jter, R. J. Oostra, V. M. Christoffels, A. F. Moorman. An Interactive Three-Dimensional Digital Atlas and Quantitative Database of Human Development. Science 354 (2016): aag0053. Doi:10.1126/science. aag0053.
[3] D. A. Jackson, R. H. Symons, R Berg. Biochemical Methodfor Inserting New Genetic Information into DNA of Simian Virus 40: Circular SV40 DNA Molecules Containing Lambda Phage Genes and the Galactose Орегон of Escherichia coli. Proceedings of the N ational Academy 69. No. 10 (1972): 2904-2909.
[4] CAR T Cells: Engineering Patients’ Immune Cells to Treat Their Cancers. National Cancer Institute, accessed April 5,2019. URL: www.cancer. gov/about-cancer/treatment/research/car-t-cells.
[5] M. Saitou, H. Miyauchi. Gametogenesisfrom Pluripotent Stem Cells. Cell Stem Cell 18 (2016): 721-735. Doi:10.1016/j.stem.2016.05.001.
[6] O. Hikabe, N. Hamazaki, G. Nagamatsu, Y. Obata, Y. Flirao, N. Hamada, S. Shimamoto, T. Imamura, K. Nakashima, M. Saitou, K. Hayashi. Reconstitution In Vitro of the Entire Cycle of the Mouse Female Germ Line. Nature 539 (2016): 299—303. Doi:10.1038/na-ture20!04.
[7] Z.-K. Li, L.-Y. Wang, L.-B. Wang, G.-FI. Feng, X.-W. Yuan, C. Liu,
K. Xu, Y.-H. Li, H.-F. Wan, Y. Zhang, Y. F. Li, X. Li, W. Li, Q. Zhou, B. Y. Hu. Generation of Bimaternal and Bipaternal Mice from Hy-pomethylated Haploid ESCs with Imprinting Region Deletions. Cell Stem Cell 23 (2018): 665-676, e4. URL: https://doi.Org/10.1016/j. stem.2018.09.004.
[8] Ibid.
[9] J. B. Gurdon. The Developmental Capacity of Nuclei Taken from Intestinal Epithelium Cells of Feeding Tadpoles. Journal of Embryology and Experimental Morphology 10 (1962): 622—640.
[10] J. B. Gurdon. The Egg and the Nucleus: A Battle for Supremacy (Nobel Lecture). Angewandte Chemie (International Edition in English) 52 (2013): 13890-13899. Doi:10.1002/anie.201306722.
[11] Roger Highfield. Scientists ‘Close to Holy Grail’of Stem Cells. Daily Telegraph, August 25, 2006, accessed April 5, 2019. URL: www. telegraph.co.uk/news/1527209/Scientists-closeto-Holy-Grail-of-stem-cells.html.
[12] The Nobel Prize in Physiology or Medicine 1990: Press Release, accessed April 5, 2019. URL: www.nobelprize.org/prizes/rnedicine/1990/ press-release/; E. Donnall Thomas. A History of Haemopoietic Cell Transplantation. British Journal of Haematology 105 (1999): 330-339. Doi:10.1111/j. 1365-2141.1999.01337.x.
[13] N. Amariglio, A. Hirshberg, B. W. Scheithauer, Y. Cohen, R. Loe-wenthal, L. Trakhtenbrot et al. Donor-Derived Brain Tumor Following Neural Stem Cell Transplantation in an Ataxia Telangiectasia Patient. PLOS Medicine 6. No. 2 (2009): el000029. URL: https://doi. org/10.1371/journal.pmed. 1000029.
[14] John Gearhart. Cell Biology: New Potential for Human Embryonic Stem Cells. Science 282 (1998): 1061-1062. Doi:10.1126/sci-ence.282.5391.1061; Eliot Marshall. Cell Biology: A Versatile Cell Line Raises Scientific Hopes, Legal Questions. Science 282 (1998): 1014-1015. Doi:10.1126/science.282.5391.1014.
[15] K. Watanabe, M. Ueno, D. Kamiya, A. Nishiyama, M. Matsumura, T. Wataya, J. B. Takahashi, S. Nishikawa, S. Nishikawa, K. Mugu-ruma et al. A ROCK Inhibitor Permits Survival of Dissociated Human Embryonic Stem Cells. Nature Biotechnology 25 (2007): 681—686. Doi:10.1038/nbtl310.
[16] David Cyranoski. The Cells That Sparked a Revolution. Nature 555 (2018): 429-430.
[17] Roger Highfield. Doug Melton: Finding a Cure for Diabetes. New Scientist, September 3, 2009, accessed April 5, 2019. URL: www. newscientist.com/article/dnl7729-doug-melton-finding-a-cure-for-diabetes/.
[18] A. Plein, A. Fantin, L. Denti, J. W. Pollard, C. Ruhrberg. Erythro-My-eloid Progenitors Contribute Endothelial Cells to Blood Vessels. Nature 562 (2018): 223-228. Doi:10.1038 /s41586-018-0552-x.
[19] S. A. Morris, R. T. Y. Teo, H. Li, P. Robson, D. M. Glover, M. Zer-nicka-Goetz. Origin and Formation of the First Two Distinct Cell Types of the Inner Cell Mass in the Mouse Embryo. Proceedings of the National Academy of Sciences of the United States of America 107 (2010): 6364-6369. Doi:10.1073/pnas.0915063107.
[20] N. Christodoulou, C. Kyprianou, A. Weberling, R. Wang, G. Cui, G. Peng, N. Jing, M. Zernicka-Goetz. Sequential Formation and Resolution of Multiple Rosettes Drive Embryo Remodelling After Implantation. Nature Cell Biology 20 (2018): 1278—1289. Doi: 10.1038/ S41556-018-0211-3.
[21] Ibid.
[22] Katie McDole, Leo Guignard, Fernando Amat, Andrew Berger, Gregoire Malandain, Loi'c A. Royer, Srinivas C. Turaga, Kristin Branson, Philipp J. Keller. In Toto Imaging and Reconstruction of Post-Implantation Mouse Development at the Single-Cell Level. Cell 175 (2018): 859-876, e 33. Doi: 10.1016/j.cell.2018.09.031.
[23] К. C. Eldred, S. E. Hadyniak, K. A. Hussey, B. Brenerman, P.-W. Zhang, X. Chamling, V. M. Sluch, D. S. Welshie, S. Hattar, J. Taylor, K. Wahlin, D. J. Zack, R. J. Johnston Jr. Thyroid Hormone Signaling Specifies Cone Subtypes in Human Retinal Organoids. Science 362 (2018): eaau6348. Doi:10.1126/science.aau6348.
[24] B. J. Wainger, E. D. Buttermore, J. T. Oliveira, C. Mellin, S. Lee, W. A. Saber, A. J. Wang, J. K. Ichida, I. M. Chiu, L. Barrett, E. A. Huebner, C. Bilgin, N. Tsujimoto, C. Brenneis, K. Kapur, L. L. Rubin, K. Eggan, C. J. Woolf. Modeling Pain In Vitro Using Nociceptor Neurons Reprogrammed from Fibroblasts. Nature Neuroscience 18 (2014): 17—24. Doi:10.1038/nn.3886.
[25] Christina R. Muratore, Heather C. Rice, Priya Srikanth, Dana G. Callahan, Taehwan Shin, Lawrence N. P. Benjamin, Dominic M. Walsh, Dennis J. Selkoe, Tracy L. Young-Pearse. The Familial Alzheimer’s Disease APPV7171 Mutation Alters APP Processing and Tau Expression in iPSC-Derived