Читать интересную книгу Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - Грин Брайан

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 61 62 63 64 65 66 67 68 69 ... 120

Эйнштейн использовал математические результаты Римана и дал им точную физическую интерпретацию. Как обсуждалось в главе 3, Эйнштейн показал, что гравитационное взаимодействие обусловлено кривизной пространства-времени. Рассмотрим эту интерпретацию более подробно. С математической точки зрения, кривизна пространства-времени, подобно кривизне батута, означает искажение расстояний между точками. С физической точки зрения, действие гравитационной силы на тело есть прямое следствие этого искажения расстояний. По мере того как размеры тел уменьшаются, физика и математика должны согласовываться всё лучше и лучше, потому что абстрактное математическое понятие точки становится всё ближе к физической реальности. Однако теория струн ограничивает точность, с которой геометрическая формулировка Римана может соответствовать физической природе гравитации, ибо накладывает ограничение на минимальный размер, который вы можете придать физическому телу. Как только вы спускаетесь до размера струны, дальше дороги нет. В теории струн не существует традиционного понятия точечной частицы: в противном случае с помощью теории струн было бы невозможно реализовать квантовую теорию гравитации. Это определённо свидетельствует о том, что риманова геометрия, в основе которой лежат вычисления расстояний между точками, на ультрамикроскопических масштабах модифицируется теорией струн.

Такое наблюдение несущественно для стандартных приложений общей теории относительности к изучению макросистем. Например, проводя исследования в области космологии, физики, не задумываясь, рассматривают огромные галактики в качестве точек, так как размер галактик пренебрежимо мал по сравнению с размером Вселенной. Этот грубый подход к формулировке римановой геометрии оказывается, тем не менее, исключительно точным — в области космологии успех общей теории относительности очевиден. Однако в ультрамикроскопической области в силу протяжённых свойств струн риманова геометрия просто не является подходящим математическим формализмом. Как мы увидим ниже, она должна быть заменена квантовой геометрией теории струн, и эта замена приведёт к возникновению поразительных и неожиданных новых эффектов.

Космологическая сцена

Согласно космологической модели Большого взрыва вся Вселенная образовалась в результате необычайного космического взрыва, произошедшего около 15 миллиардов лет назад. Как впервые обнаружено Хабблом, даже сегодня продолжают разлетаться «осколки» этого взрыва, представляющие собой миллиарды галактик. Вселенная расширяется. Нам неизвестно, продолжится ли это расширение бесконечно, или в какой-то момент расширение замедлится, затем прекратится, сменится сжатием, и, наконец, вновь приведёт к космическому взрыву. Астрономы и астрофизики пытаются изучить этот вопрос экспериментально, так как ответ зависит от величины, которую, в принципе, можно измерить, а именно от средней плотности материи во Вселенной.

Если средняя плотность материи превысит так называемую критическую плотность, равную примерно 10 −29г/см 3(около 5 атомов водорода на каждый кубический метр Вселенной), то Вселенную пронзит всепроникающая гравитационная сила, которая остановит расширение и приведёт к сжатию. Если средняя плотность материи меньше критической, то гравитационное притяжение будет слишком слабым, чтобы остановить расширение, и оно будет продолжаться вечно. (Основываясь на житейских наблюдениях, можно подумать, что средняя плотность Вселенной во много раз превышает критическое значение. Нужно, однако, иметь в виду, что материя, как и деньги, имеет тенденцию скапливаться в определённых местах. Использование средней плотности Земли, Солнечной системы или даже Млечного пути в качестве средней плотности Вселенной сродни использованию величины состояния Билла Гейтса для оценки среднего состояния простых смертных. Состояние большинства людей бледнеет по сравнению с состоянием Гейтса, и это приводит к значительному уменьшению среднего значения. Существование огромных и практически пустых пространств между галактиками ведёт к колоссальному снижению средней плотности материи.)

Тщательно исследуя распределение галактик в пространстве, астрономы могут довольно точно предсказать среднюю плотность видимой материи во Вселенной. Она оказывается гораздо меньше критической. Однако имеются серьёзные основания полагать (как с теоретической, так и экспериментальной точки зрения), что Вселенная пронизана тёмной материей. Эта материя не участвует в ядерном синтезе, происходящем в звёздах, и поэтому не излучает свет. Следовательно, её нельзя обнаружить с помощью телескопа. Никому ещё не удавалось выяснить природу тёмной материи, не говоря уже о том, чтобы вычислить её точное количество. А это означает, что будущее нашей Вселенной, которая в настоящий момент расширяется, остаётся неясным.

Рассмотрим, например, что произойдёт, если плотность материи превышает критическое значение, и однажды в далёком будущем расширение прекратится, после чего Вселенная начнёт сжиматься. Все галактики сначала будут медленно приближаться друг к другу, затем, со временем, скорость их сближения возрастёт, и они помчатся навстречу друг другу с огромной скоростью. Представьте себе всю Вселенную, сжимающуюся в один непрерывно уменьшающийся сгусток космической материи. Согласно главе 3, начиная с максимального размера во многие миллиарды световых лет, Вселенная сожмётся до миллионов световых лет, и это сжатие будет ускоряться с каждой секундой. Всёбудет сжиматься сначала до размеров одной галактики, затем до размеров одной звезды, планеты, апельсина, горошины, песчинки. Далее, согласно общей теории относительности, до размеров молекулы, атома, и, на неизбежной окончательной стадии Большого сжатия, до размеров точки. Согласно общепринятой теории Вселенная начала своё существование после взрыва в начальном состоянии нулевого размера, и если её масса окажется достаточной, завершит своё существование коллапсом в аналогичное состояние окончательного космического сжатия.

Однако мы хорошо знаем, что если характерные длины приближаются к планковской или становятся меньше неё, уравнения общей теории относительности теряют свою силу ввиду квантово-механических эффектов. На таких масштабах длин нужно использовать теорию струн. В результате встаёт вопрос о том, к каким изменениям геометрической картины на основе общей теории относительности, в которой допустим сколь угодно малый размер Вселенной (так же, как в римановой геометрии допустим сколь угодно малый размер абстрактного многообразия), приведёт использование теории струн. Вскоре мы увидим, что и здесь в теории струн имеются указания на ограничение физически достижимых масштабов длин, а новым замечательным следствием является невозможность сжатия Вселенной по любому пространственному измерению до размеров, меньших планковской длины.

Знакомство с теорией струн может вызвать у вас искушение высказать догадку, почему это так. Вы можете рассуждать, что независимо от того, сколько точек (имеются в виду точечные частицы) вы нагромождаете друг на друга, их суммарный объём остаётся равным нулю. Наоборот, если частицы — это струны, сжимающиеся при совершенно случайной ориентации, они заполнят шарик ненулевого размера, типа шарика планковских размеров, состоящего из спутанных резиновых лент. Такие соображения действительно не лишены смысла, но они не учитывают важные и тонкие свойства, изящно используемые в теории струн для обоснования минимального размера Вселенной. Эти свойства позволяют реально понять новую струнную физику и её влияние на геометрию пространства-времени.

Чтобы пояснить эти важные стороны теории, рассмотрим сначала пример, в котором отброшены детали, несущественные для понимания новой физики. Вместо теории струн со всеми десятью пространственно-временными измерениями или знакомой нам Вселенной с четырьмя протяжёнными измерениями снова рассмотрим вселенную Садового шланга. Эта вселенная, имеющая два пространственных измерения, была введена в главе 8 до обсуждения теории струн с целью разъяснения идей Калуцы и Клейна 1920-х гг. Давайте использовать её в качестве «космологической сцены» для исследования теории струн в простой постановке. Достигнутое понимание свойств этой теории будет использовано ниже для того, чтобы лучше разобраться со всеми пространственными измерениями в теории струн. С этой целью вообразим, что сначала циклическое измерение вселенной Садового шланга имеет нормальный размер, но затем начинает сжиматься всё сильнее и сильнее, приближаясь по форме к Линляндии и приводя к Большому сжатию в упрощённом и частичном варианте.

1 ... 61 62 63 64 65 66 67 68 69 ... 120
На этом сайте Вы можете читать книги онлайн бесплатно русская версия Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - Грин Брайан.

Оставить комментарий