Шрифт:
Интервал:
Закладка:
Вам может показаться, что число отверстий в свернутых измерениях планковских размеров — результат, стоящий поистине на вершине скалы современной физики, — может теперь столкнуть пробный камень эксперимента вниз, в направлении доступных нам сегодня энергий. В конце концов, экспериментаторы могут определить (на самом деле, уже определили) число семейств частиц: три. К несчастью, число отверстий в каждом из десятков тысяч известных многообразий Калаби-Яу изменяется в широких пределах. Некоторые имеют три отверстия. Но другие имеют четыре, пять, двадцать пять и т. д. — у некоторых число отверстий достигает даже 480. Проблема состоит в том, что в настоящее время никто не знает, как определить из уравнений теории струн, какое из многообразий Калаби-Яу определяет вид дополнительных пространственных измерений. Если бы мы смогли найти принцип, который позволяет выбрать одно из многообразий Калаби-Яу из огромного числа возможных вариантов, тогда, действительно, камень с вершины загромыхал бы по склону в сторону лагеря экспериментаторов. Если бы конкретное пространство Калаби-Яу, выделяемое уравнениями теории, имело три отверстия, мы бы получили от теории струн впечатляющее «послесказание», объясняющее известную особенность нашего мира, которая в ином случае выглядит совершенно мистической. Однако поиск принципа выбора многообразия Калаби-Яу пока остается нерешенной проблемой. Тем не менее, и это важно, мы видим, что теория струн способна в принципе дать ответ на эту загадку физики элементарных частиц, что само по себе уже представляет значительный прогресс.
Число семейств частиц представляет собой лишь одно из экспериментальных следствий, вытекающих из геометрической формы дополнительных измерений. Благодаря влиянию на возможные моды колебаний струн, дополнительные размерности оказывают влияние на детальные свойства частиц-переносчиков взаимодействия и частиц вещества. Еще один важный пример, продемонстрированный в работе Строминджера и Виттена, состоит в том, что массы частиц в каждом семействе зависят от того — будьте внимательны, это тонкий момент, — как пересекаются и накладываются друг на друга границы различных многомерных отверстий в многообразии Калаби-Яу. Это явление с трудом поддается визуализации, но основная идея состоит в том, что когда струны колеблются в дополнительных свернутых измерениях, расположение отверстий и то, как многообразие Калаби-Яу обворачивается вокруг них, оказывает прямое воздействие на возможные моды резонансных колебаний. Детали этого явления довольно сложны и, на самом деле, не столь существенны; важно то, что как и в случае с числом семейств, теория струн дает основу для ответа на вопросы, по которым предыдущие теории хранили полное молчание, например, почему электрон и другие частицы имеют те массы, которые они имеют. Однако эти вопросы также требуют знания того, какой вид имеют дополнительные измерения, свернутые в пространства Калаби-Яу.
Сказанное выше дало некоторое представление о том, каким образом теория струн может однажды объяснить приведенные в табл. 1.1 свойства частиц вещества. Физики, работающие в теории струн, верят, что таким же образом смогут однажды объяснить и свойства перечисленных в табл. 1.2 частиц, переносящих фундаментальные взаимодействия. Когда струны закручиваются и вибрируют в развернутых и свернутых измерениях, небольшая часть их обширного спектра колебаний представлена модами, соответствующими спину 1 или 2. Эти моды являются кандидатами на роль фундаментальных взаимодействий. Независимо от конфигурации пространства Калаби-Яу, всегда имеется одна безмассовая мода колебаний, имеющая спин 2; мы идентифицируем эту моду как гравитон. Однако точный список частиц-переносчиков взаимодействия, имеющих спин 1, — их число, интенсивность взаимодействия, которое они передают, их калибровочные симметрии очень сильно зависят от геометрической формы свернутых измерений. Таким образом, повторим, мы пришли к пониманию того, что теория струн дает схему, объясняющую существующий набор частиц, переносящих взаимодействие, т.е. объясняющую свойства фундаментальных взаимодействий. Однако, не зная точно, в какое многообразие Калаби-Яу свернуты дополнительные измерения, мы не можем сделать определенных предсказаний или «послесказаний» (выходящих за рамки замечания Виттена о «послесказании» гравитации).
Почему мы не можем установить, какое из многообразий Калаби-Яу является «правильным»? Большинство теоретиков относит это к неадекватности теоретических инструментов, используемых в теории струн. В главе 12 мы покажем более подробно, что математический аппарат теории струн столь сложен, что физики способны выполнить только приближенные вычисления в рамках формализма, известного под названием теории возмущений. В этой приближенной схеме все возможные многообразия Калаби-Яу выглядят равноправными; ни одно из них не выделяется уравнениями. Поскольку физические следствия теории струн существенно зависят от точной формы свернутых измерений, не имея возможности выбрать единственное пространство Калаби-Яу из многих возможных, нельзя сделать определенных заключений, поддающихся экспериментальной проверке. Современные исследования нацелены на разработку теоретических методов, выходящих за рамки приближенного подхода, в надежде, что помимо других выгод это выделит единственное многообразие Калаби-Яу для дополнительных измерений. В главе 13 мы рассмотрим прогресс, достигнутый в этом направлении.
Перебирая возможностиВы можете и так поставить вопрос: пусть неизвестно, какое из пространств Калаби-Яу выбирает теория струн, но позволяет ли какой-нибудь выбор получить физические характеристики, которые согласуются с наблюдаемыми? Другими словами, если мы рассчитаем физические характеристики, которые дает каждое возможное многообразие Калаби-Яу, и соберем их в один гигантский каталог, сможем ли мы найти среди них то, которое соответствует действительности? Это важный вопрос, однако есть две серьезные причины, по которым на него нельзя дать исчерпывающего ответа.
Разумно было бы начать исследование, ограничившись только теми пространствами Калаби-Яу, которые дают три семейства частиц. Это значительно сокращает список возможных вариантов. Однако обратите внимание: мы можем деформировать тор с ручками из одной формы во множество других — на самом деле, в бесконечное множество — без изменения числа отверстий. На рис. 9.2 мы показали одну такую деформацию формы, приведенной в нижней части рис. 9.1.
Рис. 9.2. Мы можем различными способами изменить форму тора с ручками, не меняя количества отверстий в нем; здесь показан один из таких способов.
Аналогично можно взять пространство Калаби-Яу с тремя отверстиями и плавно изменить его форму без изменения числа отверстий, опять же через бесконечное число промежуточных форм. (Когда выше мы говорили о десятках тысяч многообразий Калаби-Яу, мы уже сгруппировали все те многообразия, которые могут быть преобразованы друг в друга путем таких плавных деформаций, и учитывали такие группы как одно пространство Калаби-Яу.) Проблема состоит в том, что физические свойства колебаний струн, а также соответствующие им массы и константы взаимодействий, очень сильно зависят от подобных детальных изменений вида многообразия, а у нас, опять же, нет критериев для того, чтобы отдать одной из этих конкретных возможностей предпочтение перед другими. И неважно, сколько аспирантов усадят за эту работу профессора физики, невозможно перебрать все альтернативы, соответствующие бесконечному списку различных пространств.
Осознание этого побудило специалистов по теории струн исследовать физику, порождаемую выборкой из возможных многообразий Калаби-Яу. Но даже в этом случае ситуация остается непростой. Приближенные уравнения, используемые учеными в настоящее время, имеют недостаточную мощность для того, чтобы получить полную и точную физическую картину, которую дает выбранное многообразие Калаби-Яу. Эти уравнения позволяют значительно продвинуться вперед в отношении приблизительной оценки свойств колеблющейся струны, которые, как мы надеемся, будут соответствовать наблюдаемым частицам. Но точные и определенные физические вопросы, подобные тому, какова масса электрона или интенсивность слабого взаимодействия, требуют уравнений, точность которых намного превосходит ту, которую дают современные приближенные схемы. Вспомните главу 6 и пример с Верной ценой, где говорилось, что «естественным» мерилом энергии в теории струн является планковская энергия, и только благодаря необычайно точному механизму сокращений теория струн способна дать моды колебаний, массы которых близки к массам известных частиц вещества и частиц, переносящих взаимодействие. Искусные сокращения требуют точных расчетов, поскольку даже небольшие погрешности могут оказать большое влияние на результат. Как мы увидим в главе 12, в середине 1990-х гг. физики смогли добиться значительного прогресса в выходе за рамки современных приближенных уравнений, хотя сделать предстоит еще немало.