Читать интересную книгу Биотехнология: что это такое? - Владимир Вакула

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 54 55 56 57 58 59 60 61 62 ... 66

Уже первые результаты деятельности Центра оказались столь многообещающими, а перспективы исследований столь широкими, что кубинское руководство продолжило взятую линию на расширение в республике работ в области биотехнологии и приняло решение о создании еще одной научно-исследовательской организации — Центра генной инженерии и биотехнологии. И сразу же закипела работа. Начался выбор варианта проекта, командированы специалисты в Швейцарию, Францию...

Одним словом, в конце 1983 года кубинским товарищам уже было что нам показать, а нам — на что посмотреть и чему у них поучиться. Так, в лаборатории иммунохимии Центра научных исследований Министерства высшего образования Кубы мы стали свидетелями того, как проводится диагностирование тяжелых наследственных заболеваний с помощью методов иммуноферментного анализа, основанных на обнаружении в организме будущих матерей особого белка — так называемого фетапротеина. И тогда же, в 1983 году, мы познакомились с заветной мечтой кубинских медиков — создать целую сеть диагностических пунктов, охватывающих всю территорию республики.

Но, как видим, в более глобальном масштабе и поныне использование биотехнологических средств, в том числе и интерферона, в клиниках все еще ограничено. И не только в силу недостаточной изученности и отсутствия общей методики их применения, но и целого комплекса этических и профессиональных проблем, неизменно встающих перед врачом, пользующим лекарственное вещество генноинженерного происхождения. Так, до сих пор не определены конкретные критерии отбора пациентов, для лечения которых интерферон предписан. А это значит, что врач по-прежнему стоит перед дилеммой — отдать предпочтение новому методу или ограничиться старым, традиционным, пусть не столь эффективным, но зато в достаточной степени предсказуемым.

Вот почему медик, оказывающийся перед подобным выбором, руководствуется, как правило, следующими соображениями: терапевтические последствия использования интерферона проявятся не менее чем лет через пять, а спасать человека нужно сегодня, сейчас, немедленно. Когда же критическая ситуация минует — приблизительно так рассуждает врач, — организм спасенного сможет оказаться в состоянии справиться с бедой (разумеется, если она все-таки проявится). И с такой аргументацией, согласитесь, спорить очень трудно.

Но так или иначе информировать пациента о том, чем чревато для него впоследствии применение такого рода лекарства, специалист-медик просто обязан. Соблюдение этого требования обязательно не только в отношении интерферона, но и всех препаратов, ведущих свое происхождение от новой биотехнологии. Вот тут-то мы и встречаемся, как правило, с вопиющими просчетами и недоработками научной популяризации и пропаганды, выливающимися в конечном счете в столь же вопиющую безграмотность населения, имеющего самые смутные представления о том, какие «за» и «против» несут ему новейшие достижения биотехнологии. Это, разумеется, относится не только к нашей стране. Так, весьма любопытны и очень поучительны результаты опроса, проведенного во Франции еще семь лет назад. Его организаторы ставили своей задачей выяснение общественного мнения по поводу широкого использования генетических манипуляций. Так вот, против высказались 36 процентов опрошенных, 33 процента их поддержали, 31 процент участвовавших в анкетировании, как оказалось, собственного мнения по данному поводу не имели.

Опрос выявил и еще один любопытный аспект изучаемого явления: 94 процента опрошенных (имеющих, кстати, как правило, высшее университетское образование) обладали хоть какими-то представлениями о генетической инженерии. Причем большинству анкетируемых (74 процента) было не более 24 лет. 71 процент из них были знакомы со словом «хромосома», 59 процентов имели смутное представление о гене, а 74 процента не могли даже объяснить понятия «биомасса».

Два человека завязывают глаза друг другу

Разумеется, положение с информированностью населения по проблемам биотехнологии на сегодня несколько изменилось, причем в лучшую сторону. И причин тому сразу несколько. Во-первых, своеобразным ликбезом в области биотехнологических знаний явилось включение в школьные программы многих стран мира, в том числе и нашей, изучение основных положений генетики. Так что все эти «ДНК, хромосомы, РНК, гены» и прочие, еще недавно считавшиеся сугубо специальными, термины постепенно вошли в наш будничный обиход как привычные, а главное, абсолютно понятные слова. А то, что понятно, как известно, уже не воспринимается отпугивающе загадочным. Есть и другие причины, по которым, хотим мы того или нет, чисто биотехнологические термины все чаще проникают в общечеловеческий обиход.

Главная из них в том, что биотехнологическая продукция все стремительнее завоевывает международный рынок, все полнее и всестороннее удовлетворяя практические нужды человечества. Между тем пропаганда достижений биотехнологии, как правило, отстает от темпов ее вторжения в жизнь. Отсюда и тот самый печально знаменитый разрыв между информированностью населения о возможных негативных воздействиях биотехнологической продукции на человека, животный мир и окружающую среду и случаями реального проявления такого воздействия.

Между тем опыт международного сотрудничества в области биотехнологии убедительно доказывает, что подобных «ошибок» можно и должно избежать, для чего прежде всего необходимо предвидеть, какими именно путями в ближайшие двадцать, тридцать, пятьдесят лет пойдет развитие биотехнологии.

Что же по данному поводу думает наука? Мнений на этот счет, разумеется, существует несколько. Но самые авторитетные из них сводятся к тому, что микробиология, например, еще до 2000 года порадует человечество созданием азотфиксирующих растений (причем называется даже более или менее конкретная дата — 1995 год), что неизменно приведет к революционным изменениям в сельском хозяйстве.

Уже в ближайшие годы биотехнология прославится: созданием сортов сельскохозяйственных культур, устойчивых к традиционным вредителям; селекцией микроорганизмов, способных продуцировать заменители нефтехимикатов; использованием методов генетической инженерии для лечения наследственных болезней, например, победит такой грозный недуг, как серповидно-клеточную анемию (тяжелейшее злокачественное малокровие, при котором неполноценные эритроциты имеют не традиционно округлую, а серповидную форму), предположительно уже в 1993—2010 годах.

Перечень благ, ожидаемых человечеством от все возрастающих возможностей биотехнологии, можно было б продолжать и продолжать. Есть среди них и использование генетического скрининга для обнаружения и изъятия из генома конкретных участков, кодирующих врожденные дефекты. А как вы отнеслись бы, например, к омоложению организма с помощью «пресечения» программы старения, заложенной в нем самой природой? Или даже к повертыванию этой программы «вспять»? Разумеется, до определенных пределов, иначе процесс «омолаживания» может зайти, как о том пишут многие фантасты, столь глубоко, что завершится, пожалуй, возрастом младенчества.

Не сомневаюсь, что все эти «проекты» и помыслы рассматриваются вами как фантастика чистой воды. И напрасно. Правда, вот сроки реализации этих и им подобных дерзостных планов называются, на мой взгляд, даже самыми авторитетными службами прогноза чересчур оптимистические. Но кто знает, может, «провидцы» и правы, ведь действительность нередко оказывается смелее самых «космических» мечтаний.

Не собираясь опровергать ни самих предполагаемых генноинженерных вмешательств в природу, ни сроков проведения, хочу, однако, сказать о достаточно серьезной опасности, подкарауливающей человечество именно на этом поприще. Взять хотя бы такую злободневную проблему, как перенос гена азотфиксации, изъятого из бактерии, в геном злакового растения.

Подумаем-ка вместе, хорошо это или плохо.

О чем же здесь думать, удивится читатель. Любой агроном скажет вам, что, обладай та же пшеница уникальным свойством усваивать молекулярный азот воздуха, и ее урожайность мгновенно возросла бы в два, а то и в три раза. И это без всяких дополнительных капиталовложений! К тому, же производство зерна оказалось бы чрезвычайно выгодным, ведь поле, на котором произрастала бы такая пшеница, не нуждалось бы в подкормке азотными удобрениями. А значит, и их производство тоже можно было б сократить, что опять же приносило бы значительную экономию средств, столь необходимых народному хозяйству.

Да что говорить, наделить даром азотфиксации одни злаковые растения — значит полностью решить продовольственную проблему.

Что ж, не спорю, заманчивые перспективы. Но, памятуя о них, день и ночь работая над реализацией поставленной задачи, микробиолог или биотехнолог должен, просто обязан помнить, что у каждой медали есть, к сожалению, еще и оборотная сторона. Применительно же к обсуждаемой теме эта «теневая сторона» достижений биотехнологии может проявиться в том, что микроорганизмы, созданные, допустим, с единственной целью наделения свойствами азотфиксации злаковых растений, расселятся вопреки планам и желанию экспериментаторов в почве. А это значит, что тем же свойством азотфиксации станут обладать и другие растения, произрастающие на той же почве, входящие в тот же биоценоз. И кто знает, сохранится ли при этом в нем экологическое равновесие или оно рухнет, сломается под воздействием искусственно привнесенных и очень жизнеспособных начал? И не окончится ли такое вторжение катастрофой для всего живого сообщества, складывавшегося веками, а то и тысячелетиями?

1 ... 54 55 56 57 58 59 60 61 62 ... 66
На этом сайте Вы можете читать книги онлайн бесплатно русская версия Биотехнология: что это такое? - Владимир Вакула.

Оставить комментарий