Морфологические методы получили широкое распространение в области изобретательской и рационализаторской деятельности и легли в основу ТРИЗ (теории рационализаторской и изобретательской деятельности) и АРИЗ (теории алгоритмизации рационализаторской и изобретательской деятельности). А подходы последних были распространены на многие отрасли, связанные с творческой деятельностью.
3.3 Методы обработки и анализа числовых данных
Методы обработки и анализа числовых данных представлены большим многообразием и включают в себя как классические методы элементарной математики (методы приближенных вычислений, комбинаторики, алгебраические методы и др.), так и методы, оформившиеся в результате развития отрасли системно-кибернетических исследований. Следует сразу оговориться, что по предмету анализа (тому, что стоит за числами) эти методы различаются существенно, а вот, что касается формального аппарата, то в целом он универсален для всей математики. Речь не идет о том, что авторы не видят различий между формализмом методов дифференциального исчисления и методов комбинаторики. Речь идет о другом — о том, что ни один из методов обработки числовых данных при анализе сложных систем не является самодостаточным.
Семантическая компонента формальной системы, используемой для представления данных, полученных в результате процедур принципиально различного типа, обычно остается вне поля зрения аналитика вплоть до завершения цикла аналитической обработки, когда привлекается модель интерпретации результатов. Но, в то же время, именно семантическая компонента определяет саму схему обработки данных (содержание метода).
В рамках рассмотрения методов обработки и анализа числовых данных мы не будем рассматривать математические процедуры и операции, традиционно используемые для обработки результатов инструментальных измерений. Наше внимание будет сосредоточено на проблемах обработки численных данных, полученных в результате проведения опроса экспертов, поскольку этот класс данных отличается отсутствием возможности аналитическим путем оценить точность полученных данных. В числе таких методов следует выделить два класса:
— методы экспертных оценок;
— метод решающих матриц.
Методы экспертных оценок представляют собой еще одну разновидность способов привлечения опыта и знаний экспертов для решения задач управления и анализа сложных систем. Метод экспертных оценок представлен множеством модификаций, и, по мнению некоторых авторов, является более широким классом, нежели такие классы методов, как мозговые атаки, методы типа Дельфи и иные, основанные на опросе мнений экспертов. Но авторы этой книги считают иначе — не стоит смешивать различные виды классификаций: классификацию по способу активизации мышления, классификацию по источнику знаний и классификацию по способу обработки полученных данных.
По причине такого смешения и возникла путаница — методы экспертных оценок по источнику знаний равноценны методам коллективной генерации идей, методам типа Дельфи и методам опроса экспертов, по способу обработки — включает перечисленные методы, а к классу методов активизации мышления вообще никак не относится. Заметим, что в данном случае мы сосредоточим внимание на способе обработки данных, полученных в ходе экспертных опросов, на методах анализа экспертных оценок.
Рассматривая возможность использования экспертных оценок, обычно исходят из того, что неизвестная характеристика исследуемого явления может трактоваться как случайная величина, знаниями о законе распределения которой располагает специалист-эксперт. Также предполагается, что эксперт в силах оценить достоверность и значимость того или иного события, происходящего в системе. То есть, применительно к группе экспертов, считается, что истинное значение исследуемой характеристики находится внутри диапазона экспертных оценок, полученных от группы, и что в результате обобщения мнений экспертов может быть получена достоверная оценка.
Однако это не всегда так, поскольку все зависит от первоначального объема знаний о системе и степени изученности проблемы. Если знания экспертов в данной предметной области достаточно обширны, для того, чтобы полагать группу экспертов «хорошим измерителем», тогда, действительно, предположение об адекватности коллективной оценки небеспочвенно. Но если такой уверенности нет, многие приемы обработки данных экспертных опросов оказываются не только неэффективны, но и вредны. Организатор опроса должен сознавать, в какой из перечисленных ситуаций он пребывает. В зависимости от этого, внимание может концентрироваться на «случайных выбросах», как элементе нового знания, которое стоит рассматривать, как вероятно плодотворный подход (коль скоро общепринятые теории не дают желаемого результата).
Надо сказать, что должность эксперта не является экзотической для государственного устройства России. Так, мало кто из опрошенных нами сотрудников информационно-аналитических подразделений смог расшифровать хорошо известное по школьному курсу русской литературы словосочетание «коллежский асессор». Каково же было их удивление, когда они узнали, что на самом деле оно соответствует современной должности «эксперт коллегии», «научный консультант»!
Обычно, когда речь идет о применении экспертных оценок, рассматривается целый комплекс проблем, так или иначе связанных с этой процедурой, при этом рассматривают:
1. Процедуры формирования экспертных групп (это и требования к квалификации экспертов, их психологическим характеристикам, размерам групп, и вопросы тренировки экспертов);
2. Формы проведения экспертного опроса (способы проведения анкетирования, интервьюирования, смешанные формы) и методики организации опроса (создание психологической мотивации, методики анкетирования, применения методов активизации мышления);
3. Подходы к оцениванию результатов (ранжирование, нормирование, различные виды упорядочения, включая методы предпочтений, попарных сравнений и др.) и методы обработки экспертных оценок;
4. Способы определения согласованности мнений экспертов, достоверности экспертных оценок (например, статистические методы оценки дисперсии, оценки вероятности для заданного диапазона изменений оценок, оценки ранговой корреляции, коэффициента конкордации и иные);
5. Методы повышения согласованности оценок путем применения соответствующих способов обработки результатов экспертного опроса.
Пункты 1 и 2 данного перечня отчасти рассмотрены в подразделе, посвященном методам активизации мышления, и в большей степени относятся к проблемам организационного плана. Здесь же наш интерес будет сосредоточен на проблемах, перечисленных в пунктах 3–5.
Существенный интерес с точки зрения механизмов обработки экспертных оценок представляет проблема выбора вида шкал, используемых в ходе опроса. Выделяются следующие классы шкал:
— шкалы равномерные и неравномерные;
— шкалы абсолютные и нормированные;
— шкалы дискретные и непрерывные;
— шкалы одноуровневые и иерархические;
— шкалы измерений и отношений;
— шкалы одномерные и многомерные.
Равномерные шкалы представляют собой такой вид шкал, для которых расстояние (модуль метрики) между любой парой ближайших терминов является постоянным, это условие должно выполняться и для пространственной интерпретации шкалы.
Неравномерные шкалы представляют собой такой вид шкал, для которых либо геометрическое расстояние, либо расстояние измеренное в пространстве признаков (модуль метрики) между соседними двумя терминами не является постоянным в рамках шкалы. Используются тогда, когда некий интервал значений представляет особый интерес для исследователя, для чего число терминов в этом интервале увеличивается, либо производится смена масштаба отображения (что редко обходится без введения новых терминов или их квантификаторов).
Абсолютные шкалы — это шкалы, на которых в качестве терминов выступают конкретные значения абсолютных величин. Чаще всего такие шкалы используются при отображении результатов, полученных на выборках равного объема, либо для протоколирования оценок экспертов.
Нормированные шкалы — это шкалы, на которых расстояние между соседними терминами измеряется в долях или кратно (в разах) некоторой величине, то есть, эти шкалы выражаются в относительных единицах. В качестве «нормы» может быть взят объем конкретной выборки (при сопоставлении частотно-рангового распределения выборок разного объема), максимальное значение некоторой величины и иные величины, относительно которых могут выполняться операции сравнения. Например, в качестве величины, относительно которой может быть нормирована некая шкала, иногда рассматривают и значение наименьшей величины — в этом случае расстояние между терминами этой шкалы будет по модулю равно этой величине.