Однако оставим подробное рассмотрение этих вопросов специалистам в области теории систем искусственного интеллекта. Заметим лишь, что работы в области теории систем искусственного интеллекта действительно заслуживают того, чтобы с ними ознакомились люди, занятые в «сфере информационного производства». Чрезвычайно интересны эти работы хотя бы потому, что представляют собой попытки осмыслить то, каким образом человек осуществляет свою мыслительную деятельность, алгоритмизировать и упорядочить ее, что крайне важно и для эксперта-аналитика. Кроме того, нелишне хотя бы в общих чертах представлять, каким образом работает твой инструмент, каковы его параметры и особенности функционирования. Так, например, ряд направлений современной психологии выросли не из классической психологии, а из гибрида теории искусственного интеллекта, классической психологии и философской теории познания. И столь необычное происхождение этих психологических теорий, отнюдь, не мешает специалистам в этой области успешно решать задачи именно психологического плана.
Методы первичного структурирования информации широко используются при синтезе баз данных и подробно рассматриваются в разнообразных изданиях по информатике, в частности — тех, которые посвящены вопросам проектирования и разработки баз данных различного назначения[52]. В наиболее популярном и, в то же время, профессиональном изложении эти проблемы рассматриваются в книге американского автора Дэвида Васкевича[53], написанной именно для тех людей, которые руководят деятельностью или формулируют задачи перед специалистами в области разработки программного обеспечения, но не обязаны вникать в технологические подробности процесса разработки. В частности, в книге Васкевича описываются различные способы организации и структурирования данных, виды отношений между ними, приведены наглядные примеры, что позволяет руководителю по ее прочтении квалифицированно руководить коллективом разработчиков и грамотно организовать технологический процесс. Но подчеркнем еще раз: для нас в этой книге содержится информация, связанная именно с проблемой структурирования информации.
Нет ничего удивительного в том, что мы обращаемся к базам данных для того, чтобы проиллюстрировать процессы структурирования информации. Базы данных — это тоже модели, описывающие те или иные аспекты существования системы/процесса, поэтому при их создании и проектировании так же применяются методы структурирования информации, отличающиеся от прочих методов лишь тем, что структурирование осуществляется уже с учетом ограничений, налагаемых технологической платформой. В общем случае при структурировании информации такие ограничения не всегда принимаются в расчет.
Так или иначе, но полученный массив описаний предметной области или проблемы на начальном этапе структурирования информации должен быть приведен к виду, упрощающему его дальнейшую обработку. Если сведения получены в результате проведения информационно-поисковых процедур (например, в различного рода средствах массовой информации — от печатной прессы до сети Интернет), полученный исходный массив, как правило, не структурирован и разноформатен. В этом случае перед аналитиком встает задача первичного структурирования массива сообщений в ее наиболее сложном варианте (здесь требуется выделение из сообщений информации, релевантной задачам исследования, ее компоновка и т. п.).
Однако если речь идет о сборе информации методом опроса экспертов, первичное структурирование информации может быть проведено уже на предшествующем этапе за счет разработки системы опросников, анкет и иных средств упорядочивания информации. Стратегия опроса экспертов (в том числе — проведения мозговых атак или деловых игр) может быть организована таким образом, чтобы ввести экспертов в ситуацию, управляющую процессом высказывания суждений в той последовательности, при которой информация будет изначально структурирована некоторым образом, отвечающим потребностям последующей ее формализации. В некоторых случаях экспертам могут быть предъявлены на оценку заранее подготовленные варианты решения задач, массивы исходных данных и прочие материалы, нуждающиеся в оценивании и ранжировании с привлечением их опыта.
В одном случае (при анкетировании и управлении процедурой опроса или стратегией игры) информация извлекается в соответствии с заранее установленной рубрикацией. В другом случае (при оценивании вариантов) структура организации информации не изменяется и остается в рамках заранее установленной формы любого уровня структурной организации. В частности, варианты, предложенные для оценивания, могут быть сформулированы на основе исследований, предварительно проведенных на имитационных моделях, или полученных в результате собеседования с другими группами или с той же группой экспертов.
Для выделения логической структуры описаний, предварительно разделенных на рубрики (относящиеся к одним и тем же группам объектов, процессам, временным и пространственным областям) применяются различные методы, обеспечивающие возможности:
— выделения «дискретных» состояний (для текстовых описаний — это связано с определением множества терминов, используемых для описания некоторого, существенного для решаемой задачи, состояния);
— упорядочивания их во времени (построение сценариев типа «раньше — позже»);
— причинно-следственного связывания (построение сценариев типа «причина — следствие»);
— пространственного связывания и иные.
На следующем этапе в зависимости от целей деятельности подобные модели могут быть подвергнуты процедуре декомпозиции (детализации) или агрегации (композиции или свертке), в результате чего формируется описание необходимого уровня абстракции/детализации.
Дальнейшие этапы выполняются за счет введения специальных систем именования элементов модели, приписывания им поименованных атрибутов, описания функциональных зависимостей и так далее. Например, в качестве функциональных зависимостей для ряда задач могут быть рассмотрены зависимости ресурс-время-результат и иные, которые на начальных этапах могут быть использованы для маркирования дуг графа, а впоследствии — воплощены в программные коды имитационных моделей. Особый класс составляют модели ситуаций, используемые для распознавания объектов, их состояний, тенденций и процессов. В таких моделях может абсолютизироваться либо статический, либо динамический аспект существования/функционирования системы. Однако подробно рассматривать эти процедуры мы здесь не будем, тем более, что некоторые аспекты этой деятельности нами уже были описаны при рассмотрении соответствующих классов моделей.
Методы поэтапной структуризации задач и группа морфологических методовОсобый класс задач структурирования информации представляют собой задачи структурирования целей и задач в условиях, характеризующихся различным уровнем неопределенности. Для их решения существует ряд методов, к числу которых относятся методы поэтапной структуризации задач и группа морфологических методов. Оба класса методов адаптированы к применению в условиях высокой неопределенности. Но те способы, какими решается задача устранения неопределенности, различаются коренным образом: первая группа методов ориентирована на управление процессом постепенного снижения неопределенности, а вторая — на решение задачи синтеза модели за одну итерацию (но в результате может быть получен целый массив альтернативных моделей). Характерно, что при использовании морфологического метода уровень неопределенности может сохраниться прежним, а исходная неопределенность будет перенесена на другой уровень формального описания (хотя, благодаря переходу к формальному представлению, решение задачи понижения неопределенности в некоторых случаях удается поручить средствам автоматизации).
Однако на этом различия не кончаются. Уровень формализации первичной модели, с которой начинается работа каждого их классов методов, также является индивидуальным для разных групп методов. Для методов поэтапной структуризации этот уровень может быть произвольным, а для морфологических методов необходимо, чтобы детальная декомпозиция предметной области уже была произведена и были сгенерированы матричные модели специального строения. И, наконец, последнее различие: метод поэтапной формализации — это метод поэтапного приближения к формальной модели или этапу логически обоснованного выбора решения, а морфологический метод — это метод синтеза альтернатив, подлежащих анализу и оценке. То есть первая группа методов связана с процедурами логического вывода решения, а вторая — с комбинаторным анализом, процедурами перебора решений, в общем случае, полученных без логического вывода.