Шрифт:
Интервал:
Закладка:
Лучшим решением этой проблемы будет «процессивный» двигатель, остающийся прикрепленным к актину и в то же время каким-то образом марширующий вдоль актиновой нити, как уличная процессия. Именно это мы и наблюдаем. Несколько небольших изменений в структуре миозина делают из него как раз такой процессивный двигатель, способный перемещаться вдоль актиновой нити, все время за нее держась. Какие это изменения? Одно из них — удлинение шейки. Вспомните, что в мышцах две миозиновые головки торчат рядом, прочно соединенные друг с другом хвостами и шейками, но в остальном, судя по всему, не особенно координируют свою работу. Стоит немного удлинить шейки, и взаимозависимость головок еще ослабнет. Это позволит одной головке оставаться прикрепленной, пока вторая совершает взмах, в результате чего миозиновый двигатель сможет перемещаться вдоль провода, перебирая «руками»[49]. Другие варианты предполагают соединение трех или даже четырех головок. Также, разумеется, нужно избавиться от хвостов, чтобы миозиновые головки не торчали из толстой нити, а могли свободно «расхаживать» по клетке. И, наконец, к двигательным головкам нужно прикреплять другие предметы. Это происходит за счет «соединительных» белков, каждый из которых соответствует какой-то одной разновидности груза. В итоге мы получаем целое племя процессивных двигателей, способных по актиновым путям развозить грузы в клетке во всех направлениях.
Как возник этот великий парад двигательных белков? В мире бактерий и близко нет ничего подобного. При этом актин и миозин — не единственный двигательный «дуэт» в эукариотических клетках. У двигательных белков другого семейства, так называемых кинезинов, принцип работы примерно такой же, как у миозинов: они тоже перемещаются по проводам цитоскелета, перебирая «руками». Но кинезины пользуются при этом не актиновыми нитями, а проводами большего калибра — так называемыми микротрубочками, собираемыми из субъединиц еще одного белка — тубулина. Одна из многих функций кинезинов состоит в том, что во время деления клеток они обеспечивают расхождение хромосом к полюсам по веретену из микротрубочек. Существуют и другие разновидности двигательных белков, но мы не будем их разбирать, чтобы не завязнуть в избыточных подробностях.
Для всех этих двигательных белков, как и для их путеводных проводов, известны бактериальные прототипы, хотя родственные связи между теми и другими далеко не всегда очевидны, а бактериальные белки обычно выполняют совсем другую работу[50]. Здесь тоже помогли методы рентгеноструктурного анализа, позволившие установить родство, которое, может, вообще не удалось бы выявить, пользуясь только генетическими последовательностями.
На уровне подробных генетических последовательностей между двигательными белками двух основных разновидностей, миозинами и кинезинами, нет почти ничего общего. Здесь и там попадаются похожие участки, но долгое время считалось, что такие участки возникли случайно или в результате конвергентной эволюции. Кинезины и миозины и вправду казались классическим примером конвергенции: двумя неродственными группами белков, которые специализировались на выполнении сходных функций и у которых поэтому выработались черты структурного сходства (точно так же, как между крыльями летучих мышей и птиц, возникших независимо и похожих друг на друга оттого, что в них были сходным образом решены одни и те же задачи, связанные с полетом).
Но затем с помощью рентгеноструктурного анализа удалось с атомарным уровнем разрешения установить их трехмерную структуру. Генетическая последовательность дает лишь двумерную последовательность букв — либретто без музыки, — в то время как рентгеноструктурный анализ кристаллов позволяет определить трехмерную форму белка — оперу целиком во всем ее великолепии. Вагнер однажды заметил, что оперная музыка должна вырастать из слов, что слова первичны. Но Вагнера помнят не за одни словесные выражения тевтонских страстей — именно музыка вдохнула жизнь в его произведения, которыми наслаждается уже не одно поколение ценителей. Точно так же и последовательность генов представляет собой Слово природы, но настоящая музыка белков заключена в их форме, и именно она позволяет белкам выживать под давлением естественного отбора. Отбору нет дела до последовательностей генов: его заботят только функции. Хотя гены и определяют функции кодируемых ими белков, они часто делают это именно за счет того, что диктуют форму, в которую белки сворачиваются по правилам, по-прежнему плохо нам понятным. В результате последовательности генов, происходящих от общего предка, могут постепенно расходиться так далеко, что между ними не останется никакого сходства, как и получилось с генами миозинов и кинезинов. Но вырастающая из них музыка белковых шариков никуда не делась, и ее по-прежнему можно выявить с помощью рентгеноструктурного анализа.
Итак, исходя из данных рентгеноструктурного анализа, мы знаем, что миозины и кинезины действительно происходят от одного и того же белка, несмотря на очень слабое сходство кодирующих эти белки генов. Их трехмерное строение обнаруживает множество соответствующих друг другу складок и других структур, вплоть до ключевых аминокислот, сохранившихся в одном и том же положении на одних и тех же местах. Это поразительное достижение отбора: он сохранил строение белковых структур и промежутков между ними неизменными в течение миллиардов лет, хотя сам материал этих структур и даже определяющие его последовательности со временем исказились до неузнаваемости. И все эти структуры показывают, что и миозины, и кинезины родственны более многочисленному семейству белков, которые явно происходят от бактериальных предшественников[51]. Эти бактериальные белки выполняли (и по-прежнему выполняют) работу, включающую те или иные движения, требующие приложения физической силы, например переходы из одной конформации в другую, но ни один из них не обеспечивал настоящей подвижности. Таким образом, рентгеноструктурный анализ показывает нам строение «костей» белка, как рентгеновский снимок птичьего крыла демонстрирует строение его скелета. И так же, как строение костей и суставов выдает происхождение крыльев, развившихся из конечностей бескрылых рептилий, строение двигательных белков свидетельствует о том, что они явно произошли от бактериальных белков, способных менять конформацию, но не обладавших настоящей подвижностью.
Рентгеноструктурный анализ позволил сделать удивительные открытия и об эволюции цитоскелета — тех самых протянутых по всей клетке актиновых и тубулиновых проводов. Можно задаться вопросом, зачем клетке понадобилось вырабатывать целую сеть таких проводов — скоростных магистралей для двигательных белков, когда в ней еще не было самих этих двигательных белков. Не означало ли это, что эволюция поставила телегу впереди лошади? Нет, если цитоскелет был ценен сам по себе. Ценность цитоскелета определяется его структурными свойствами. Форма всех эукариотических клеток, от длинных и тонких нервных клеток до плоских клеток эндотелия, поддерживается именно нитями цитоскелета, и оказывается, что примерно то же самое относится и к бактериям. Многие поколения биологов приписывали многочисленные формы бактериальных клеток (палочковидную, спиралевидную, серповидную и так далее) окружающей эти клетки жесткой клеточной стенке. Поэтому, когда в середине 90-х годов XX века выяснилось, что у бактерий тоже есть цитоскелет, это стало большой неожиданностью. Бактериальный цитоскелет состоит из тонких нитей, очень похожих на актиновые и тубулиновые. Как мы теперь знаем, эти нити отвечают за поддержание сложной формы бактериальных клеток. (Мутации в генах цитоскелета приводят к тому, что обладающие сложной формой бактериальные клетки превращаются в простые шарики.)
Как и в случае с двигательными белками, генетическое сходство между белками бактериального и эукариотического цитоскелетов невелико. Но сходство их трехмерного строения, установленное лет десять назад с помощью рентгеноструктурного анализа, оказалось еще сильнее, чем у двигательных белков. По сути, бактериальные и эукариотические цитоскелетные белки почти точно накладываются друг на друга, так что одни и те же структуры и промежутки, а также несколько одинаковых ключевых аминокислот полностью совпадают. Ясно, что цитоскелет эукариотических клеток развился из бактериального. При этом эукариотические белки сохранили не только форму, но и функции далеких предшественников. И те, и другие играют общую структурную роль, но в обоих случаях цитоскелет способен на нечто большее, чем обеспечение неподвижной опоры. В отличие от нашего жесткого костного скелета клеточный скелет всегда динамичен, непрерывно меняется и перестраивается, непостоянен и всеобъемлющ, как грозовые облака. Он позволяет прикладывать силу, передвигая хромосомы, разделяя клетки пополам в ходе их удвоения, а также (по крайней мере, у эукариот) формировать наружные выросты и без помощи двигательных белков. Короче говоря, цитоскелет уже сам по себе обладает подвижностью. Как такое могло получиться?
- Лестница жизни: десять величайших изобретений эволюции - Ник Лэйн - Биология
- Как живые: Двуногие змеи, акулы-зомби и другие исчезнувшие животные - Андрей Юрьевич Журавлёв - Биология / Прочая научная литература
- Гидропоника для любителей - Эрнст Зальцер - Биология