объяснение оказалось неверным. Повреждения мозга его пациентов были слишком разнообразными для проведения более тщательных наблюдений. Примерно через десять лет молодому Иноуэ удалось сделать то, чего не смог Хеншен, и в значительной степени его успех стал возможен благодаря жестокой эффективности новых русских винтовок. Чистые и четко очерченные отверстия от пуль, выпущенных из этих винтовок, и создаваемые ими небольшие скотомы позволили связать пулевые отверстия со слепотой и в результате обнаружить зрительные карты, спрятанные в мозге у солдат.
Иноуэ понимал, насколько важны доскональные измерения. Чтобы построить точную карту зрительного центра мозга, он должен был тщательно измерить как скотому, так и пулевое отверстие в голове каждого солдата. Измерения полей зрения уже проводились точно и регулярно, но Иноуэ нуждался в собственном методе измерения и сравнения повреждений мозга у раненых. Он придумал инструмент, названный краниокоординометром, который представлял собой набор линеек, соединенных с помощью регулируемых зажимов (рис. 2). Эта конструкция надевалась на голову человека, как шлем, и Иноуэ мог аккуратно измерять параметры разных голов. Он экстраполировал траекторию движения пули через голову и сопоставлял ее с локализацией и размером слепого участка в поле зрения каждого пациента.
В 1909 году Иноуэ опубликовал результаты осмотра 29 солдат. В его отчете содержалось подробное описание реальной карты зрительного пространства в человеческом мозге. В отличие от Хеншена, Иноуэ почти все детали установил правильно. Его карта распадается на две половины – каждая на одной стороне головы. И обе располагаются в самой задней части мозга – в области, которую теперь называют первичной зрительной корой, коротко – V1. Отображение в этой области перевернуто по сравнению с тем, что происходит в поле зрения, на котором оно основано: в тканях мозга изображение травы и земли находится над изображением неба и облаков. Изображение также перевернуто слева направо, так что правое поле зрения отображается слева, и наоборот. Более того, этот зрительный образ сильно искажен, как будто в то место, где на карту нанесена информация из центра поля зрения, положили сильное увеличительное стекло. Но открытия Иноуэ на этом не закончились. Он представил интригующие доказательства того, что карта V1 не единственная: в человеческом мозге спрятаны и другие зрительные карты.
Рис. 2. Фотография солдата, обследованного Иноуэ, на ней продемонстрировано применение краниокоординометра (слева) и показана траектория движения пули через тело солдата (справа). Источник: Die Sehstörungen bei Schussverletzungen der kortikalen Sehsphäre (Зрительные нарушения как результат пулевого ранения в зрительной области коры). Leipzig: W. Engelmann, 1909.
Карты каждого из нас
Прослеживая непосредственную связь между локализацией повреждения в мозге и местом расположения слепого пятна, Иноуэ обнаружил первую из известных зрительных карт мозга. Впрочем, утверждение, что в мозге существует зрительная карта (не говоря уже о том, что их несколько), может показаться нам абсурдным. Возможно, это связано с нашим привычным опытом обращения с географическими картами. Мы привыкли к таким зрительным указателям, как туристические планы или схемы линий метро. А эти карты состоят из материи – реальной физической материи, такой как краска на бумажном листе, изготовленном из древесной целлюлозы.
Конечно, сегодня мы часто видим карты на экранах, и это показывает, в какой степени несущественно, из чего сделана карта. Когда мы загружаем на экран компьютера маршрут передвижения, этот маршрут представлен в виде световых волн разной длины, исходящих от экрана. Если мы распечатаем этот план на бумаге, чтобы взять с собой в дорогу, мы воссоздаем его на бумаге, но изображение остается тем же самым. И в этом прелесть отображения: оно позволяет нам обмениваться информацией о сущностях и явлениях без необходимости их воспроизведения. Мне не нужно заново строить пирамиды, чтобы показать вам, как они расположены в Гизе. Мне нужны лишь ручка и лист бумаги, палец и запотевшее стекло или палочка на песчаном пляже. Короче говоря, совсем не важно, из чего сделана карта. Она может быть фактически из любого материала.
Карты мозга не нарисованы на бумаге и не отображены на экране; они сделаны из клеток. В мозге содержится несколько видов клеток, половину из которых составляют нейроны. Нейроны связаны между собой красивыми ветвистыми отростками, переносящими электрические и химические сигналы от одного нейрона к другому. Нейрон может производить электрические импульсы один за другим, и скорость испускания этих импульсов зависит от той информации, которую отображает нейрон.
Когда я говорю о скорости испускания импульсов, называемой скоростью возбуждения, я сразу представляю себе школьный класс, в котором младшие школьники стараются привлечь внимание учителя: “Меня, меня, спросите меня! А меня?!” Чем чаще они выкрикивают, тем настоятельнее звучит их призыв – будь то желание ответить на вопрос учителя или просьба отлучиться в туалет. Выкрики учеников в школьном классе, как импульсы, посланные разными нейронами мозга, могут иметь совершенно разный смысл. Но в любом случае частота испускаемых сигналов отражает срочность или важность сообщения. Когда скорость возбуждения нейрона возрастает и происходит быстрый залп импульсов, значит, в этот момент нейрон хочет передать важную информацию.
Представьте себе, что мы вскрываем чей-то череп и расправляем складки задней части мозга, так что область V1 предстает в плоском виде. Эта плоская поверхность мозга состоит из нейронов, как бумага – из древесной массы. Лист нейронов аналогичен листу бумаги, на которой печатают обычную карту. Но вместо красок разного цвета карты мозга представляют информацию через частоту возбуждения нейронов, из которых они состоят: одни возбуждаются активно, а другие почти совсем не возбуждаются. В техническом аспекте частота возбуждения нейрона – это число электрических сигналов, которые он посылает за определенный промежуток времени. Можно сказать, что в картах мозга электричество и время играют такую же роль, как краска на обычных картах.
Клетки, электричество и время. Это сырье, необходимое мозгу для создания карт.
Возможно, к концепции карт мозга нужно привыкнуть. Они не похожи на обычные карты. Однако карта в области V1 по своей сути не отличается от карты в бардачке автомобиля. Аналогично тому, как мы превращаем карту на экране компьютера в карту, распечатанную на бумаге, мы переносим эту же карту с листа бумаги в область V1, просто глядя на нее. Одна не хуже другой, и все они вполне реальные.
Еще одно отличие карт мозга от обычных географических заключается в том, что первые изменчивы. Географическая карта, начерченная на папирусе или выгравированная на панно, неподвижна и неизменна. И это нормально, поскольку ландшафтные ориентиры неподвижны, а географические изменения происходят медленно. Когда такие изменения случаются, печатные карты устаревают. Они не могут автоматически обновляться, чтобы соответствовать изменениям, происходящим в мире.