Читать интересную книгу 1. Современная наука о природе, законы механики - Ричард Фейнман

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 41 42 43 44 45 46 47 48 49 ... 60

Все величины, имеющие направление, подобно шагу в про­странстве, называются векторами.

Вектор определяется тремя числами. Чтобы описать шаг, скажем из начала координат в точку Р, определяемую коорди­натами х, у и z, мы фактически должны задать три числа. Но мы будем использовать для этой цели один-единственный матема­тический символ r, с которым нам чаще всего придется иметь дело в дальнейшем. Это не одно число: символ r задается тремя числами: х, у и z. Символ r означает три числа, но не только эти три числа, потому что при переходе к другой системе координат нужно заменить их числами х', у' и z'. Однако мы хотим как можно более упростить нашу математику и исполь­зуем один и тот же символ в качестве представителя трех чи­сел х, у, z и трех чисел х', у', z'. Точнее говоря, мы используем один и тот же символ в качестве представителя первого набора чисел в одной системе координат и делаем его представителем второго набора чисел, если захотим сменить систему коор­динат. Это удобно потому, что нам не придется изменять формы уравнений при переходе от одной системы координат к другой. Если мы записываем уравнения, используя координаты х, у и r, а затем меняем систему отсчета, то появляются координаты х', у' и z', но мы пишем просто r, условившись, что этот символ служит представителем х, у, z, если мы пользуемся первой системой отсчета, и х', у', z', если мы перешли к другой системе. Три числа, которые описывают векторную величину в заданной системе отсчета, называются составляющими (компонентами) вектора в направлении координатных осей системы отсчета. Иначе говоря, мы используем один символ для обозначения трех букв, и он соответствует наблюдению одного и того же объек­та с трех разных точек зрения. Произнося слова «один и тот же объект», мы обращаемся к нашей физической интуиции, которая говорит нам, что шаг в пространстве не зависит от того, какими составляющими мы его описываем. Итак, символ r представляет один и тот же объект независимо от того, как мы ориентируем оси системы отсчета.

Предположим теперь, что существует другая направленная величина, например сила — еще одна величина, которую можно определить, задав связанные с ней три числа. Эти три числа переходят при изменении системы координат в другие три числа по строго определенным математическим правилам. Эти правила должны быть теми же самыми, которые определяли пере­ход тройки чисел х, у, z в х' , у', z'. Другими словами, вектор — это величина, определяемая тремя числами, которые преобра­зуются при изменениях системы координат так же, как состав­ляющие шага в пространстве. Уравнение типа

F = r

справедливо в любой системе координат, если оно верно хотя бы в одной из них. Оно заменяет нам три уравнения

Fx=x, Fy=y, Fz=z или соответственно

Fх'=х' ,Fу'=у' ,Fz'=z'.

Тот факт, что физические соотношения между какими-либо ве­личинами можно выразить в виде векторных уравнений, говорит о том, что эти соотношения верны в любой системе координат. Вот почему понятие вектора очень удобно в физике.

Давайте теперь рассмотрим некоторые свойства векторов. В качестве примера «вектора» можно указать скорость, импульс, силу и ускорение. Часто бывает удобно изобразить вектор в виде стрелки, указывающей направление действия. Но почему же можно представить силу стрелкой? Да потому, что она пре­образуется по тем же законам, что и «шаг в пространстве». Именно поэтому можно представить силу в виде чертежа, как если бы это изображалось перемещение, причем выберем та­кой масштаб, чтобы единица силы, например ньютон, соответ­ствовала некоторой длине. Проделав такую процедуру однажды, мы всегда сможем изображать силы в виде отрезков, потому что уравнение типа

F=kr

(где k — некоторая постоянная) имеет вполне определенный смысл. Возможность представлять силу отрезком сулит нам большие выгоды, потому что, изобразив отрезок или стрелку, можно не заботиться о координатных осях. При этом, конечно, всегда можно быстро подсчитать, как изменяются составляющие вектора при поворотах осей, потому что дело сводится к про­стому геометрическому построению.

§ 5. Векторная алгебра

Теперь мы должны описать законы, или правила, 'регули­рующие возможные сочетания различных векторов. Прежде всего мы изучим сумму двух векторов. Пусть векторы а и b задаются в какой-нибудь системе координат составляющими ах, ay , azи bx, by ,bz. Предположим, что кому-то пришло в голову составить три числа ах+bx, ay+by , аг+bz. Получим ли мы в результате вектор? Вы можете сказать: «Разумеется, ведь это три числа, а три числа образуют вектор». Нет, вектор обра­зуют не любые три числа! Чтобы задать вектор, мы должны связать заданные нам три числа с координатной системой так, чтобы при повороте координатных осей эти числа «поворачива­лись» относительно друг друга и «перемешивались» по описан­ным ранее правилам. Таким образом, мы должны выяснить, во что превращаются числа ах+bх, аy+by, az+bг, если известно, что при изменении системы координат числа ах, ау, azпереходят в а'х, а'у, a'z, а bх, bу, bгпереходят в b'x, b'y, b'г? Получим ли мы после поворота координатных осей числа а'х +b'x, a'y+b'y, a'z+b'z? Ответ, конечно, будет утвердительным, потому что наше основное уравнение (11:5) определяет так называемое линейное преобразование. Если мы применим это преобразование к ахи bхи вычислим ах+bxто окажется, что преобразованное ах+bхесть то же самое, что и ах+bх. «Складывая» векторы а и b по только что описанному правилу, мы получаем новый вектор c. Мы запишем это так:

с=а +b.

Вектор с обладает интересным свойством:

с=b+а;

это легко проверить, написав составляющие вектора с. Кроме того,

а+(b+с)=(а+b) + с.

Векторы можно складывать в любом порядке.

Каков геометрический смысл а+b? Как будет выглядеть вектор с, если мы, скажем, изобразим а и b с помощью стре­лок? Ответ на этот вопрос дает фиг. 11.4.

Фиг.11.4. Сложение векторов.

Мы видим, что приба­вить составляющие вектора b к составляющим вектора а проще всего, приложив соответствующим образом прямоугольник, определяемый составляющими b, к такому же прямоугольнику, определяемому составляющими а. Поскольку а и b хорошо подогнаны к своим прямоугольникам, то это все равно, что поставить вектор b «ногами» на «голову» вектору а. Стрелка, сое­диняющая «ноги» вектора а и «голову» вектора b, и будет век­тором с. Можно поступить иначе: поставить «ноги» а на «голову» b. Вспомнив геометрические свойства параллелограмма, можно убедиться в том, что мы снова получим тот же вектор с. Заметим, что, ставя векторы друг на друга, мы складываем их без помощи координатных осей.

Предположим, что мы умножили вектор а на число а. Что нужно понимать под таким произведением? Договоримся по­нимать под этим вектор с компонентами аах, аау, aaz. Дока­жите сами, что это действительно вектор.

1 ... 41 42 43 44 45 46 47 48 49 ... 60
На этом сайте Вы можете читать книги онлайн бесплатно русская версия 1. Современная наука о природе, законы механики - Ричард Фейнман.
Книги, аналогичгные 1. Современная наука о природе, законы механики - Ричард Фейнман

Оставить комментарий