Читать интересную книгу Биотехнология: что это такое? - Владимир Вакула

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 37 38 39 40 41 42 43 44 45 ... 66

Проблема усугублялась еще тем, что клетка, продуцирующая антитела (знакомые нам лимфоциты), «не хотела» развиваться in vitro. Ее, как вам известно, научат этому гораздо позднее в лаборатории Р. Галло. А пока лимфоцит все еще «не хочет» развиваться в культуре ткани.

Вот тут-то будущие нобелевские лауреаты Ц. Мильштейн и Г. Кёлер и вспоминает об уникальной способности раковых клеток размножаться бесконтрольно и безудержно. И принимают решение попытаться обернуть зло во благо, заставив раковую клетку нарабатывать, производить только те клетки, которые нужны исследователям.

Они «соединяют» с миеломными (миелома — рак иммунной системы) клетками нормальные лимфоциты, взятые у мыши. И... получают гибридому. Ту самую знаменитую теперь гибридому, без которой оказалось бы невозможным современное производство великого множества веществ и препаратов. Гибридома бессмертна, ведь «узда» ограничения воспроизводства в ее генетическом аппарате отсутствует. К тому же гибридому можно выделить и поместить в культуру ткани, и она продолжит свою бесконечную работу в искусственно созданных условиях, столь же бесконечно воспроизводя невообразимо огромное количество клеток, производство которых ей в данном случае поручено. А так как первая в мире гибридома представляла собой гибрид миеломных клеток и лимфоцита, то в своем бесчисленном потомстве она восопроизводила достоинства, полученные и от той, и от другой. От лимфоцита — способность нарабатывать антитела определенного типа, от миеломы — талант неограниченного размножения в культуре.

Гибридома, подобно хорошо отлаженному, никогда не ломающемуся конвейеру, бесконечно продуцирует-клон антител одного определенного вида, способного распознавать единственную антигенную детерминанту. Другими словами, гибридома производила в эксперименте Ц. Мильштейна и Г. Кёлера (и производит всегда!) только моноклональные антитела.

А теперь представьте себе такую ситуацию: в какой-то стране, в какой-то удивительно удачливой лаборатории какими-то вполне конкретными и чрезвычайно талантливыми специалистами получен наконец некий противораковый агент. Его соединяют с моноклональными антителами — и гибридома начинает свой бесконечный выпуск иммунотоксина, прицельно уничтожающего раковые клетки.

И все! Вечного спутника человека, его рока и проклятия больше не существует!

Не верится? А я не сомневаюсь: когда-нибудь так и случится...

А победят рак объединенные усилия биотехнологии, иммунологии, медицины, союз которых крепнет день ото дня.

Теперь же вновь вернемся к прерванному рассказу о создании вакцины против СПИДа, от которого мы несколько отвлеклись, обратившись к событиям 1984 года.

Помните, работа Б. Мосса над созданием противоспидной вакцины зашла в тупик, оказавшись менее эффективной, нежели ожидалось. Именно поэтому, дабы ответить на сам собою возникающий риторический вопрос «почему именно сложилось такое положение», нам и понадобился экскурс в первую половину 80-х годов. Но зато теперь мы знаем, что за «низкое» качество иммунного ответа «подсудны» антигенные детерминанты.

И что ж? Разве наши обогатившиеся дополнительными сведениями знания могут помочь кому-то в поисках выхода из тупика, в котором оказались создатели вакцины против СПИДа?

Наши знания останутся, разумеется, при нас. Потому что для людей, несведующих в иммунной биотехнологии, они всего лишь — информация к размышлению. А вот тем, кто работает над этой проблемой, без подобной информации не обойтись. Потому что, как пишет Е. В. Кожина (Институт иммунологии Минздрава СССР) в своей статье «Существуют ли вакцины против СПИДа», опубликованной в одном из номеров журнала «Химия и жизнь» за прошлый год, «есть сведения о том, что антитела к разным антигенным детерминантам НIV-1 (напомню — один из вирусов возбудителей СПИДа. — Авт.) далеко не одинаково влияют на течение болезни — лишь некоторые из них играют роковую роль. Если так, то усиление ответа к вирусу целиком, ко всем его составляющим сразу не способствует исцелению. А вот резкое повышение иммунного ответа к отдельным ключевым детерминантам может оказаться решающим элементом успеха». И далее «...во Франции Д. Загури ввел себе и еще десяти добровольцам из Заира полученный от Мосса препарат. На тридцатый или шестидесятый день после инъекции в крови были обнаружены нейтрализующие антитела. Однако они воздействовали только на ту линию вирусов, которая использовалась при создании вакцины: против сильно отличающихся штаммов она была бессильна.

Позже была проведена вторичная стимуляция вирусом осповакцины. К сожалению, результатов повторного вакцинирования еще нет.

Аналогичная вакцинация сделана еще одной группой ученых под руководством С.-Л. Ху и С. Косовски. Она вызвала рост числа Т-лимфоцитов и образование нейтрализующих антител у макак-резусов и шимпанзе. Однако, когда вакцинированных обезьян заражали большой дозой НIV-1, защиты от инфекции, несмотря на наличие нейтрализующих антител, так и не появилось. Возможно, это произошло из-за слишком большой дозы вируса при умышленном заражении (для человека, при реальных, условиях передачи инфекции, такая доза невозможна). Поэтому после коррекции дозы фирма «Оncogen» начала цикл клинических испытаний этой вакцины».

Ученые разных стран пытаются создать генно-инженерную вакцину против СПИДа. Определенные успехи достигнуты и на пути производства искусственных вакцин, в которых защитный антиген присоединяется к молекуле синтетического полимера. Так что последний выступает здесь сразу в двух ролях — носителя и стимулятора иммунного ответа.

Такие вакцины уже существуют, успешно прошли проверку не только на экспериментальных животных, но и в широкой ветеринарии и всюду оказались весьма результативными.

Многое сделано и для диагностики СПИДа, в том числе и советскими учеными, создавшими под руководством академика Р. В. Петрова диагностическую систему «Пептоскрин».

Но... СПИД настолько грозная опасность для человечества, так многолико ее проявление, что работы по ее изучению хватит и для исследователей грядущих поколений.

Но прежде чем завершить эту часть своего рассказа, нам придется вновь вернуться в год 1984-й. Уж очень он был «урожайным» на Нобелевские премии за достижения успехов, имевших непосредственное отношение к обсуждаемой проблеме. Речь на сей раз пойдет о Р. Брюсе Меррифилде, удостоившемся чести стать нобелевским лауреатом за «простую и гениальную» идею автоматического синтеза белков. Идею, открывшую невиданные ранее возможности в химии белков, пептидов и нуклеиновых кислот.

Но вы сказали, что работы ученого имеют самое непосредственное отношение к теме этой книги, так и слышу я недоуменный вопрос читателя.

И безоговорочно это подтверждаю. Дело в том, что любая биотехнологическая проблема, в том числе и из разряда иммунобиотехнологических, как правило, сводится к проблеме белков. Их синтеза, воспроизводства, обнаружения, расщепления, узнавания и т. д. и т. п. Удивительно ли, что Р. Меррифилд еще в 50-е годы увлекся проблемой «сборки» аминокислот в пептиды, представляющие собой как бы упрощенный вариант белков. Почему упрощенный? Да потому, что длина аминокислотных цепочек, из которых складываются пептиды, короче белковых. Целью Р. Меррифилда стало создание метода, позволившего бы осуществить автоматический синтез молекул белка. Он искал и нашел самый рациональный способ «сборки» длинных цепей аминокислот, ковалентно связав первую аминокислоту с гранулой полистирола.

Вопрос о последовательности и способе присоединения остальных кислот решался ученым предельно просто. Они в определенной последовательности присоединялись исследователем к предыдущему звену цепи. Присоединение происходило с помощью обычной, широко распространенной в таких операциях химической реакции, которую, к тому же, оказалось совсем не трудно поставить и «на поток». А как только синтез полипептидной цепи завершится, ее легко отделить от носителя.

Осуществление этой простой, но поистине гениальной идеи необыкновенно много дало практике. И прежде всего медицине и фармакологии. Так, первым белком, созданным по методу Меррифилда, стал инсулин, затем сразу в нескольких лабораториях мира тем же способом получили синтетические вакцины. В том числе против гриппа, гепатита В, бешенства.

И что интересно, при производстве таких вакцин обошлись без синтеза всего белка. Достаточным оказалось и оболочки вирусной частицы, обладающей антигенными свойствами, а значит и стимулирующей в организме продуцирование антител. (Вспомните о «фотографии», дающей представление иммунной системе об облике врага.)

Синтетические вакцины лишены тех недостатков, которые свойственны обычно вакцинам естественным. Ведь они представляют собой препараты убитых или ослабленных микроорганизмов, а значит, и не исключают возможности заражения. Метод Меррифилда или, как его сейчас принято называть, метод твердофазного химического синтеза имеет и другие многочисленные применения. Например, с его помощью получают гормон роста (гипофизарный гормон АКТГ), тиреоидный гормон кальцитонин, глюкагон — белок, вырабатываемый поджелудочной железой.

1 ... 37 38 39 40 41 42 43 44 45 ... 66
На этом сайте Вы можете читать книги онлайн бесплатно русская версия Биотехнология: что это такое? - Владимир Вакула.

Оставить комментарий