Шрифт:
Интервал:
Закладка:
Следует отметить, что в «Альмагесте» Птолемей широко пользуется заимствованной у вавилонян шестидесятиричной системой нумерации, применяя ее не только для дуг круга, но также для отрезков и площадей. Таким образом, «минуты», «секунды» и т. д. становятся у него отвлеченными числами, не связанными с каким-либо определенным видом величины. Любопытно, что в его записи дробей существовал символ о («омикрон»), служивший для обозначения отсутствия одного из шестидесятиричных разрядов. Это — первое появление нуля в европейской математической литературе.
Работы Менелая, Герона, Птолемея показывают, что в Ι—II вв. н. э. в Александрии происходит возрождение математических наук. При этом обращает на себя внимание следующее обстоятельство: если в IV–III вв. центральным направлением, разрабатывавшимся александрийскими математиками, была геометрическая алгебра, то после Аполлония из Перги (II в.) это направление заходит в тупик и теперь заметный прогресс наблюдается в прикладной математике (приближенные вычисления) и в разделах, связанных с астрономией (сферическая тригонометрия), картографией и оптикой. То, что этот прогресс не получил дальнейшего развития в античную эпоху, зависело не от внутренних закономерностей развития науки, а от внешних условий, оказавших крайне неблагоприятное воздействие на научную деятельность того времени, и в частности на судьбу александрийской научной школы.
Эти неблагоприятные условия дали себя знать уже начиная с конца II в. н. э. Для Римской империи III век н. э. был веком политического развала и социального разложения. После смерти императора Коммода (в 192 г.) начинается ожесточенная борьба за императорский трон между сенатом и различными армейскими группировками. В период со 192 по 284 год на римском престоле сменилось 22 императора, большинство которых погибло насильственной смертью. В подавляющем числе случаев эти монархи были грубыми, необразованными временщиками, которым не было никакого дела до науки и культуры и основная забота которых состояла в том, чтобы как можно дольше продержаться на троне и хотя бы на время отразить врагов, наседавших на империю со всех сторон. На севере, в Галлии, это были франки и алеманны, на северо-востоке, на Дунае — готы, сарматы и маркоманны, в Азии — новая персидская держава Сассанидов. В различных частях империи вспыхивают восстания крестьян, колонов и рабов, усиливаются центробежные тенденции, приводящие к возникновению новых государственных образований, которые раздуваются, а затем лопаются как мыльные пузыри. Одним из таких государств стала Пальмира, центром которой был одноименный город — оазис, расположенный на перекрестке торговых путей в восточной части Сирийской пустыни. В 60-е годы III в. н. э. Пальмира объединила под своей властью всю
Сирию, значительную часть малой Азии, Аравию и Египет вместе с Александрией. После разгрома Пальмиры войсками императора Аврелиана (270–275 гг. н. э.) в Александрии вспыхивает антиримское восстание, руководимое неким Фирмусом. Отсутствие материалов не позволяет нам делать какие-либо заключения о социальной природе и целях этого восстания, но его последствия оказались гибельными для александрийской науки. Римляне окружили восставших в Брухейоне — центральном районе Александрии, в котором был расположен бывший дворцовый комплекс, включавший Мусейон. В результате осады Брухейон был разрушен и сожжен, а вместе с ним погибли остатки царской Библиотеки. Это произошло в 272 г. н. э. Правда, за пределами Брухейона еще оставалась «малая» библиотека, расположенная на территории храма Сераписа. И хотя деятельность Мусейона, по-видимому, окончательно прекратилась, в Александрии еще продолжали жить и работать ученые. Любопытно, что это были в основном математики. И вот о деятельности этих последних могикан александрийской математической школы нам остается рассказать в этой главе.
Прежде всего это был Диофант, величайший математик III столетия. В его лице мы встречаемся с представителем нового, алгебраического направления в античной математике, которое не находилось ни в какой связи с традиционной греческой геометрией. В свете новейших открытий в области ориенталистики можно считать вероятным, что корни алгебры Диофанта (так же, как и приближенных формул Герона) восходят к вавилонской математике. К сожалению, мы не располагаем никакими промежуточными звеньями, которые позволили бы проследить процесс переноса вавилонских алгебраических методов на эллинистическую почву.
О жизни и личности Диофанта у нас нет никаких сведений, если не считать стихотворной эпиграммы-задачи, из которой следует, что Диофант прожил 84 года. Основное сочинение Диофанта — «Арифметика» — посвящено «достопочтеннейшему» Дионисию. Мы знаем, что в середине III в. в Александрии существовал известный христианский деятель Дионисий, с 231 по 247 г. стоявший во главе александрийского христианского училища для юношества, а в 247 г. ставший епископом Александрии. Если в посвящении к «Арифметике» речь идет именно о нем, то это почти единственное указание на время жизни Диофанта, которым мы располагаем.
«Арифметика» состояла из тринадцати книг, из которых до нас дошли только шесть. Уже само построение «Арифметики» существенно отличается от дедуктивно-аксиоматического способа изложения, принятого в классической греческой математике. «Арифметика» представляет собой собрание задач, которые решаются независимо друг от друга; эти решения подчас бывают очень остроумны, хотя, по-видимости, не претендуют на всеобщность. Было бы однако неправильно считать, что Диофант не владел общими методами или недооценивал их значения. В первой книге Диофант рассматривает задачи, приводящие к определенным квадратным уравнениям. Судя по всему, он умел решать эти задачи не хуже вавилонян и индийцев, причем в эпоху Диофанта, по-видимому, уже существовала устойчивая традиция решения таких задач.
Начиная со второй книги, Диофант рассматривает главным образом неопределенные уравнения — сначала второго, а потом и более высоких порядков. В Европе нового времени «Арифметика» стала известна в XVI в.; развитые Диофантом методы решения неопределенных уравнений оказали огромное влияние на Виета и Ферма. Эти методы находятся в таком же отношении к позднейшей алгебре и теории чисел, в каком архимедовы методы вычисления площадей и объемов находятся к анализу бесконечно малых.
Для обозначения алгебраических выражений Диофант впервые ввел буквенную символику, сделав тем самым важный шаг вперед как по сравнению с числовой алгеброй вавилонян, так и по сравнению с греческой геометрической алгеброй классического периода. В его сочинении алгебра впервые находит свой собственный, присущий ей язык; правда, этот язык очень отличается от алгебраической символики нашего времени. Так, например, у Диофанта еще нет знака + («плюс»); если нужно сложить несколько членов, он просто пишет их друг за другом. Для вычитания же у него существует особый символ Д (можно ли рассматривать этот символ как обозначение отрицательного числа, остается неясным). В качестве примера укажем, что уравнение
x3 + 8x — (5x2 + 1) = x
выглядит в записи Диофанта следующим образом:
Κδαςςη Д Δ*εΜ°αιςα
Для историка математики большой интерес представляет вопрос о том, был ли Диофант гениальным одиночкой, не имевшим ни непосредственных предшественников, ни последователей, или же его работы вписывались в какую-то уже существовавшую в александрийской математике традицию. В пользу второй возможности говорят указания на другого математика той же эпохи — Анатолия Александийского, на которого ссылается неоплатоник IV в. Ямвлих Анатолий (позднее ставший епископом Лаодикийским) написал сочинение в десяти книгах «Введение в арифметику», текст которого до нас, к сожалению, не дошел. Сравнение этого сочинения с трудами Диофанта, вероятно, позволило бы уяснить многое в тенденциях развития арифметико-алгебраического направления в александрийской науке. Однако на фоне общего культурного упадка в эпоху гибели античного мира эти тенденции были обречены на увядание. И это несмотря на то, что работы Диофанта были хорошо известны александрийским математикам IV в. н. э. Паппу и Теону. А знаменитая Гипатия написала комментарий к арифметике Диофанта.
Конец III и начало IV в. н. э. характеризуются мощным наступлением христианской идеологии на языческую античную культуру. До поры до времени христиане еще оставались преследуемой религиозной сектой. Своего апогея гонения на христиан достигли при императоре Диоклетиане (285–305 гг.), которому удалось добиться известной консолидации Римской империи. Однако ни кровавые преследования последователей учения Христа, ни разрушение христианских храмов, ни сожжение священных книг не могли задержать победного шествия нового вероучения. Усиление репрессий приводило лишь к тому, что в лоно христианской церкви вливались тысячи и тысячи новых ее адептов. И уже через несколько лет после смерти Диоклетиана на престол вступил Константин Великий (312–337 гг.) — первый римский император, официально принявший христианство.
- Эллинизм и его историческая роль - Абрам Борисович Ранович - История
- Неизвестная революция 1917-1921 - Всеволод Волин - История
- Блог «Серп и молот» 2021–2022 - Петр Григорьевич Балаев - История / Политика / Публицистика