Читать интересную книгу Руководство по спортивной медицине - Коллектив авторов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 26

Выделившаяся в ходе гидролиза АТФ энергия расходуется на изменение пространственного взаимоотношения сократительных белков. По современным представлениям молекулярной биологии, при мышечном сокращении происходит повторяющееся образование и разрушение спаек между миозиновыми молекулами миозина и актина.

Расщепление АТФ в мышце происходит с очень большой скоростью – до 10 мкмоль/мин на 1 г мышцы.

1.2.1. Реакция гидролиза аденозинтрифосфорной кислоты

В анаэробных условиях АТФ вступает в гидролитическое расщепление:

где E – энергия.

Образовавшиеся в ходе гидролиза аденозиндифосфорная кислота (АДФ) и фосфорная кислота (H3PO4) служат в дальнейшем продуктами для синтетических процессов. Выделившаяся энергия преобразуется в механическую работу. АТФазная энергия обеспечивает такие виды спорта, как спринт, гольф, теннис.

Накапливать большее количество АТФ мышца не может. Между тем и минимальное количество АТФ не может опускаться ниже генетически определенного уровня. Если такое произойдет, то случится поломка «кальциевого насоса», и мышца будет сокращаться вплоть до полного исчерпания всех запасов АТФ и развития состояния стойкого мышечного сокращения.

Запасов АТФ в мышце обычно хватает для энергетического обеспечения 3 – 4 одиночных сокращений максимальной силы, т. е. на 0,5 – 1,0 с работы.

Тем не менее значительного снижения концентрации АТФ не происходит. Это объясняется тем, что по ходу работы АТФ восстанавливается из продуктов распада с той же скоростью, с которой она расщепляется. Для ресинтеза АТФ из продуктов ее распада необходима энергия.

АТФ в митохондриях образуется в цикле Кребса, где ацетил-коэнзим А (ацетил-КоА) окисляется с участием кислорода до CO2 и образования АТФ. С помощью фермента-переносчика адениннуклеотидтранслоказы АТФ перемещается из митохондрий в цитозоль, где используется в различных метаболических реакциях.

В истории апробировались три способа возможного повышения уровня АТФ.

1. Во времена Первой мировой войны считали, что назначение в пищу фосфатов (4 г/сут) может улучшить физическое состояние человека. Позднее контролируемые клинические исследования не подтвердили эффективности фосфатной нагрузки.

2. Введение инозина (аденозина, рибоксина). Также не имеет смысла, так как дефицита и излишков АДФ и аденозинмонофосфорной кислоты (АМФ) в клетке не наблюдается. У спортсменов применение инозина не влияло на аэробные возможности и ухудшало анаэробные. Инозин метаболизируется в мочевую кислоту и приводит к гиперурикемии. При внутривенном введении рибоксин распадется в доли секунды практически в месте инъекции.

3. Введение экзогенной АТФ составляло основу метаболической терапии в 60 – 80-х гг. прошлого столетия. Так как в клетке используется только митохондриальная АТФ, попытки улучшить мышечный метаболизм за счет введения экзогенной потерпели неудачу.

1.2.2. Ресинтез аденозинтрифосфорной кислоты в миокиназной реакции

Миокиназная реакция происходит в мышцах при значительном увеличении концентрации АДФ в цитоплазме клетки. Такая ситуация возникает при выраженном мышечном утомлении, когда скорость процессов ресинтеза АТФ не уравновешивает скорость ее гидролиза. С этой точки зрения миокиназную реакцию можно рассматривать как аварийный механизм, обеспечивающий ресинтез АТФ в условиях, когда его невозможно осуществить другим путем:

При усилении миокиназной реакции часть образующейся АМФ может необратимо дезаминироваться и выводиться из сферы энергетического обмена. Это очень невыгодно организму, поскольку дезаминирование АМФ ведет к уменьшению общих запасов АТФ в мышцах со всеми вытекающими отсюда последствиями. И, тем не менее, некоторое увеличение концентрации АМФ в цитоплазме оказывает активирующее влияние на ферменты гликолиза и тем самым способствует повышению скорости анаэробного ресинтеза АТФ.

1.2.3. Ресинтез аденозинтрифосфорной кислоты в креатининфосфатазной реакции

В спортивной биохимии креатининфосфатазную реакцию называют реакцией энергетического буфера, или реакцией перефосфорилирования:

где Кр – креатин.

В мышцах человека креатининфосфокиназа обладает большой активностью, а исходные вещества реакции – АДФ и КрФ – проявляют высокое химическое сродство, поэтому и начинается реакция параллельно с началом гидролиза. Наивысшей скорости эта реакция достигает уже ко второй секунде. Ферментативное обеспечение реакции активизируется ионами Ca и, как это ни странно, креатинином – конечным продуктом реакции, что предотвращает ослабление ее интенсивности.

Эта реакция первой включается в процесс ресинтеза АТФ и протекает со значительной интенсивностью до тех пор, пока не будут исчерпаны запасы КрФ в мышцах. Реакцией «энергетического буфера» она называется за то, что обеспечивает постоянство содержания АТФ в мышцах при резких перепадах в скорости ее использования.

Содержание КрФ в мышцах примерно в 3 раза превышает содержание АТФ. Общие запасы фосфогенов в мышцах обеспечивают мышечную работу с максимальной силой в течение 10 – 15 с. В первые секунды, пока концентрация КрФ в мышцах высока, активность креатининфосфокиназы поддерживается на высоком уровне, эта реакция вовлекает в процесс большую часть АДФ и этим блокирует развитие других биоэнергетических реакций. Только после того как запасы КрФ в мышцах будут исчерпаны на 50 % (пятая-шестая секунды работы), скорость реакции начинает уменьшаться и постепенно в процесс ресинтеза АТФ вступает гликолиз. Это происходит с увеличением продолжительности работы. К тридцатой секунде скорость реакции уменьшается в 2 раза, а к третьей минуте составляет лишь 1,5 % от ее первоначального значения.

Креатининфосфатазная реакция протекает без кислорода, она легко обратима. После прекращения работы, когда в мышцах появляется переизбыток АТФ, происходит реакция ресинтеза КрФ, приводящая к восстановлению его до исходного уровня.

Креатининфосфатазная реакция составляет биохимическую основу локальной мышечной выносливости. Она играет решающую роль в энергетическом обеспечении кратковременных упражнений максимальной мощности – спринтерский бег (100 – 200 м), прыжки, метания, тяжелоатлетические упражнения. Эта реакция обеспечивает возможность быстрого перехода от покоя к работе, внезапных изменений темпа по ходу ее выполнения, финишного ускорения (спурт).

Возможности метаболической коррекции. Дополнительное введение креатинфосфата представлялось заманчивым способом усиления энергетических возможностей сократительного и пластического процессов. К сожалению, экзогенный креатинфосфат не проникает через клеточную мембрану и не может в обычных условиях поступить в клетку. Эта возможность появляется при нарушении проницаемости клеточных мембран при острых повреждениях, вызванных ишемией или чрезмерной физической нагрузкой. В спортивной медицине креатинфосфат в дозе 20 г/сут может быть полезен при кратковременных интенсивных физических нагрузках (спринт, хоккей и т. д.). В культуризме креатин позволяет существенно приподнять интенсивность тренинга, причем явное повышение силы чувствуется уже через 7 – 10 дней приема препарата в дозе 10 г/сут (по5гдоипосле тренировки).

В клинике креатинфосфат применяется только при остром инфаркте миокарда.

1.2.4. Ресинтез аденозинтрифосфорной кислоты в реакции анаэробного гликолиза

Как только в процессе мышечной работы креатининфосфатазная реакция перестает обеспечивать необходимую скорость восстановления АТФ и в клетке увеличивается концентрация свободных молекул АДФ, основную роль в ресинтезе АТФ начинает играть анаэробный гликолиз. В процессе гликолиза внутримышечные запасы гликогена и глюкозы расщепляются ферментативным путем до молочной кислоты:

При этом одна молекула глюкозы синтезирует всего две молекулы АТФ. Быстрому включению гликолиза в работу способствуют повышение концентрации АДФ и неорганического фосфора в цитоплазме клетки, а также свободные ионы Ca.

Максимальная мощность гликолиза несколько ниже предыдущей креатининфосфатазной реакции. Наибольшей скорости гликолиз достигает уже на тридцатой секунде работы, а к концу первой минуты становится основным источником энергии ресинтеза АТФ. Однако быстрое исчерпание небольших запасов гликогена в мышцах и снижение активности ключевых ферментов гликолитической цепи под влиянием накапливающейся молочной кислоты приводит к падению скорости гликолиза. Так, на двенадцатой-пятнадцатой минутах работы скорость гликолиза составляет только половину от первоначального значения.

Метаболическая емкость гликолиза определяется внутримышечными запасами углеводов и размерами буферных систем, что обеспечивает поддержание заданной мощности мышечной деятельности во временном интервале от 30 с до 2,5 мин. Таким образом, емкость гликолиза более чем в 10 раз выше емкости креатининфосфатазной реакции. И, тем не менее, эффективность гликолиза невысока. Это связано с тем, что большая часть энергии оказывается законсервированной в молекулах молочной кислоты, которая является промежуточным, недоокисленным продуктом химической реакции. Законсервированная энергия может быть выделена только в результате аэробного окисления. Поэтому КПД реакции всего около 37 %, т. е. более половины всей выделяемой энергии превращается в тепло и не может быть использовано для ресинтеза. В результате повышения скорости теплопродукции в работающих мышцах их температура увеличивается до 41 – 42 °C.

1 2 3 4 5 6 7 8 9 10 ... 26
На этом сайте Вы можете читать книги онлайн бесплатно русская версия Руководство по спортивной медицине - Коллектив авторов.

Оставить комментарий