Читать интересную книгу Основы кибернетики предприятия - Джей Форрестер

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 35 36 37 38 39 40 41 42 43 ... 164

На рис. 8–5 изображено показательное запаздывание третьего порядка. Такая форма реакции на выходе в отличие от рассмотренных ранее удовлетворяет очевидным характеристикам фактического процесса поставки. На рис. 8–5 а выходная реакция на импульсный ввод вначале равна нулю; при этом угол наклона кривой выхода в начальной точке также равен нулю. Кривая начинает медленно подниматься, достигает максимальной крутизны, а затем и экстремального значения, и идет вниз. На рис. 8–5 б показан выход, следующий за скачкообразным изменением в темпе ввода.

Запаздывание третьего порядка удовлетворяет важнейшим требованиям, которые мы можем интуитивно предъявить к выражающей его функции в приведенном выше примере доставки товаров. Дальнейшее уточнение функции запаздывания потребовало бы тщательного изучения каждого из запаздываний в реальной системе и их распределения во времени. Маловероятно, что какое-либо дальнейшее уточнение будет оказывать заметное влияние на поведение системы.

Если показательное запаздывание постоянной общей продолжительности дробить на увеличивающееся число последовательных секций первого порядка все меньшей и меньшей величины, то начальное запаздывание в ответ на импульс увеличивается, прежде чем возникает реакция на выходе. При этом подъем кривой выхода происходит круче, круче становится и спад этой кривой; в результате нулевое значение темпа на выходе наступает быстрее. Последний, конечный член этой группы запаздываний представляет собой гипотетическое запаздывание неопределенного порядка[44]. Его иногда называют дискретным, или канальным, запаздыванием. Рис. 8–6 дает представление о показательном запаздывании неопределенного порядка, где на выходе ничего не происходит до тех пор, пока не пройдет время запаздывания D; после этого на выходе сразу же в точности воспроизводится ввод. На рис. 8–6 а показан импульсный ввод определенного количества в запаздывание и, как результат, импульсный выход, возникающий в момент времени D. Рис. 8–6 б показывает реакцию на скачкообразное изменение темпа ввода. Темп ввода возрастает внезапно от нуля до конечной величины реакции; то же происходит и на выходе на D дней позже. Ясно, что такое представление запаздывания не будет правильно отражать реальную обстановку в приведенном выше примере, поскольку в этом случае оказалось бы, что все поставки, которые были начаты в один и тот же момент, должны быть выполнены точно в одно и то же время, на D дней позже, независимо от того, насколько далекой была транспортировка.

При отображении запаздывания, связанного с установлением темпа производства на предприятии после его реконструкции, у нас может появиться желание получить более длительное начальное запаздывание, чем создающееся в случае с показательным запаздыванием третьего порядка. Так как последовательное расположение показательных запаздываний увеличивает начальное запаздывание и крутизну восходящей ветви кривой, то в этом случае можно будет воспользоваться, например, запаздыванием шестого порядка (то есть двумя последовательными запаздываниями третьего порядка).

После того как будет найдена функциональная форма, качественно соответствующая накопленному нами знанию фактов, отпадет необходимость в соответствующих данных для дальнейшего уточнения функции. Это положение может служить иллюстрацией общих соображений в разделе 3.7 об источниках информации для разработки моделей. Как только удастся установить вид функции, которая качественно удовлетворяет характеристикам реальной системы, как в неустановившихся, так и в стабилизированных условиях, лучше всего, вероятно, перейти к другим частям модели, пока испытания сами не выявят ее чувствительности к некоторым принятым допущениям[45].

На рис. 8–7 показаны реакции на выходе запаздываний, выраженных показательной функцией первого, второго, третьего, шестого и неопределенного порядков для случая, когда ввод является импульсным. Это значит, что в нулевой момент времени в запаздывание вводится определенное количество и на этом ввод прекращается. Проследим за темпом на выходе. По оси абсцисс на рис. 8–8 отложено время в единицах общего среднего запаздывания D, которое определяется таким образом, чтобы при установившемся потоке его темп, умноженный на величину среднего запаздывания, определил находящееся в нем количество содержимого. Другими словами, все кривые приведены к одинаковым условиям таким образом, что для запаздывания величиной D и для постоянного потока через запаздывание в количестве R единиц в единицу времени, количество предметов, находящихся в процессе продвижения, было равно произведению (R)(D).

Рис. 8–7. Реакции показательного запаздывания на единичный импульс.

Нетрудно заметить, что запаздывание п-го порядка эквивалентно п последовательным запаздываниям первого порядка, каждое из которых имеет продолжительность D/n. В установившемся потоке каждое запаздывание первого порядка имеет одинаковый темп потока и, следовательно, заключает в себе 1/n-ю часть общего количества единиц, имеющихся в запаздывании.

По оси ординат на рис. 8–7 отложен темп потока на выходе, отнесенный к начальному темпу запаздывания первого порядка, который равен I/D, где I есть количество, вводимое в начальный момент в виде импульса, a D есть среднее запаздывание. Отношение I/D имеет размерность единицы/время.

На рис. 8–8 показан выход из запаздываний первого, второго, третьего, шестого и неопределенного порядков при скачкообразном характере изменения темпа ввода; в этом случае в нулевой момент времени задается величина темпа внезапно возникшего потока на входе. По оси ординат на этом рисунке отложено отношение темпа потока на выходе из запаздывания к темпу на входе[46].

Рис 8–8. Реакции показательного запаздывания на скачкообразное изменение темпа на входе.

Глава 9

ПРАВИЛА И РЕШЕНИЯ

Уравнения темпов, описанные в главах 5 и 6, выражают правила, которые регламентируют функционирование системы. Это функционирование представлено в форме серий решений, определяющих и регулирующих темпы потоков в системе. В основу построения модели кладется отчетливая формулировка образа действий (правил), которые обеспечивают принятие решений с учетом всех условий, подлежащих отражению в данной системе. Процесс принятия решений состоит из трех этапов: установление комплекса показателей, V/' определяющих желаемые условия, учет существующих условий и выработка корректирующих действий, имеющих целью приблизить существующие условия к желаемым.

1 ... 35 36 37 38 39 40 41 42 43 ... 164
На этом сайте Вы можете читать книги онлайн бесплатно русская версия Основы кибернетики предприятия - Джей Форрестер.

Оставить комментарий