Шрифт:
Интервал:
Закладка:
Рассмотрим утверждение (3). Если оно ложно, то не верно, что по крайней мере одно из трех утверждений ложно. Значит, все три утверждения истинны. В частности, истинно утверждение (3), и мы пришли бы к противоречию. Следовательно, утверждение (3) не может быть ложно. Значит, оно должно быть истинно. Отсюда мы заключаем, что по крайней мере одно из трех утверждений в действительности ложно. Но утверждение (3) не может быть ложным. Следовательно, ложно либо утверждение (1), либо утверждение (2). Если ложно утверждение (1), то существует Траляля.
Если ложно утверждение (2), то существует Труляля.
Следовательно, либо Траляля, либо Труляля существует.
Однажды я выступал с лекцией о своих логических задачах-головоломках в студенческом математическом клубе. Собравшимся меня представил логик Мелвин Фиттинг (мой бывший студент, который хорошо знал меня). Его краткая речь великолепно отразила дух этой книги. Он сказал: «Я имею честь представить вам профессора Смаллиана, который докажет вам, что либо он не существует, либо вы не существуете, но кто именно не существует, вам не известно».
239. Доказательство того, что Трулюлю существует.
Представьте, что перед нами лист бумаги с двумя утверждениями:
1) Трулюлю существует.
2) Оба утверждения на этом листе ложны.
Рассмотрим сначала утверждение (1). Если бы оно было истинно, то оба утверждения были бы ложны. В частности, было бы ложно утверждение (2), и мы пришли бы к противоречию. Следовательно, утверждение (2) ложно. Значит, не верно, что оба утверждения ложны, поэтому по крайней мере одно из них истинно. Так как утверждение (2) не истинно, то истинно должно быть утверждение (1). Следовательно, Трулюлю существует.
240. Существует ли Дед Мороз?
Должен сказать, что существование Деда Мороза многие подвергают сомнению. Несмотря на скептицизм, столь распространенный в наше время, я приведу три доказательства, не оставляющих ни малейшего сомнения в том, что Дед Мороз существует и должен существовать. Все три доказательства являются вариантами метода, заимствованного мною у Дж. Баркли Россера. Этот метод позволяет доказать что угодно.
Первое доказательство. Изложим это доказательство в форме диалога.
Первый логик. Если не ошибаюсь, Дед Мороз существует.
Второй логик. Разумеется, Дед Мороз существует, если вы не ошибаетесь.
Первый логик. Следовательно, мое утверждение истинно.
Второй логик. Разумеется!
Первый логик. Итак, я не ошибся, а вы согласились с тем, что если я не ошибаюсь, то Дед Мороз существует. Следовательно, Дед Мороз существует.
Второе доказательство. Приведенное выше доказательство представляет собой не что иное, как беллетризованный вариант следующего доказательства, предложенного Дж. Баркли Россером:
Если это утверждение истинно, то Дед Мороз существует.
В основе этого доказательства лежит уже знакомая нам идея. С ней мы встречались, когда доказывали, что если обитатель острова рыцарей и лжецов высказывает утверждение «если и рыцарь, то то-то и то-то», то он должен быть рыцарем, а «то-то и то-то» должно быть истинно.
Если наше утверждение истинно, то Дед Мороз заведомо существует (потому что если это утверждение истинно, то должно быть верно, что если это утверждение истинно, то Дед Мороз существует, из чего следует, что Дед Мороз существует). Следовательно, то, о чем говорится в утверждении, верно, поэтому утверждение истинно. Значит, утверждение истинно, а если оно истинно, то Дед Мороз существует. Следовательно, Дед Мороз существует.
Вопрос. Предположим, что обитатель острова рыцарей и лжецов заявляет: «Если я рыцарь, то Дед Мороз существует?» Доказывало бы это, что Дед Мороз существует?
Ответ. Несомненно, доказывало бы. Однако поскольку дед Мороз не существует, то ни лжец, ни рыцарь не могли бы высказать подобное утверждение.
Третье доказательство.
Это утверждение ложно, и Дед Мороз не существует.
Детали доказательства я предоставляю читателям.
Необходимые пояснения. Что в этих доказательствах «не так»? Ошибка в них та же, что и в рассуждениях претендента на руку Порции N-й: часть утверждений лишена смысла (об этом мы более подробно поговорим в гл. 15), и их нельзя считать ни истинными, ни ложными.
Следующее доказательство, к рассмотрению которого мы сейчас переходим, основано на совершенно ином принципе.
241. Доказательство того, что единорог существует.
Я хочу доказать вам, что единорог существует. Для этого, очевидно, достаточно доказать более сильное (как нам кажется) утверждение о том, что существует существующий единорог. (Под существующим единорогом я понимаю единорога, который существует.) Ясно, что если существует существующий единорог, то какой-нибудь единорог тем более должен существовать. Итак, я должен доказать, что существующий единорог существует. Возможны два и только два случая:
1) Существующий единорог существует.
2) Существующий единорог не существует.
Второй случай мы исключаем из рассмотрения как противоречивый: как может не существовать существующий единорог? Существующий единорог непременно должен существовать точно так же, как синий единорог должен быть синим.
Необходимые пояснения. B чем ошибка этого доказательства? Оно представляет собой не что иное, как самую суть знаменитого онтологического доказательства существования бога, предложенного Декартом. Декарт определил бога как существо, обладающее всеми мыслимыми свойствами. Значит, по определению, бог должен обладать свойством существовать. Следовательно, бог существует.
Иммануил Кант объявил доказательство Декарта недействительным на том основании, что существование не есть свойство. Я считаю, что в доказательстве Декарта имеется гораздо более серьезная ошибка. Не вдаваясь в обсуждение вопроса о том, можно ли считать существование свойством, я хочу лишь заметить, что даже если существование — свойство, то доказательство Декарта остается неверным.
Рассмотрим сначала мое доказательство (звучит гордо, не так ли?) существования единорога. Насколько я могу судить, ошибка в приведенных мною рассуждениях состоит в следующем. Когда я привожу определение существующего единорога («под существующим единорогом я, разумеется, понимаю единорога, который существует»), то имею в виду не какого-то вполне определенного существующего единорога, а некоторого существующего единорога, или, если угодно, существующего единорога вообще. Это подразумеваемое слово «некоторый» допускает двойственное толкование: иногда оно может означать «любой, каждый, всякий», иногда же означает «по крайней мере один». Например, если я высказываю утверждение «у совы большие глаза», то оно означает, что у сов большие глаза, что у всех сов большие глаза или что у каждой совы большие глаза. Но если я высказываю утверждение «в этом доме сова», то оно отнюдь не означает, что в этом доме собрались все совы. Я имею в виду лишь, что в этом доме находится по крайней мере одна сова. Именно поэтому, когда я говорю: «Существующий единорог существует», то не ясно, что именно имеется в виду: что все существующие единороги существуют или что по крайней мере один существующий единорог существует. Если я имею в виду первое, то высказанное мною утверждения истинно: все существующие единороги, разумеется, существуют. Как бы мог уже существующий единорог не существовать? Но это не означает, что высказанное мною утверждение истинно во втором смысле, то есть что по крайней мере один единорог непременно должен существовать.
Аналогичное замечание можно сделать и по поводу доказательства Декарта. Из него по сути дела следует, что все боги существуют, то есть всякий X, удовлетворяющий определению бога по Декарту, должен обладать свойством существования. Но это отнюдь не означает, что по крайней мере один бог непременно существует.
242. Доказательство Эйлера.
О поездке Дидро в Россию по приглашению Екатерины II рассказывают следующий анекдот. Дидро был атеистом и не скрывал своих убеждений. Императрица находила его высказывания забавными, но один из ее вельмож счел, что они могут вызвать нежелательное брожение умов, и посоветовал пресечь вольнодумные речи Дидро. Против энциклопедиста был составлен небольшой заговор, к участию в котором был приглашен знаменитый математик Эйлер, человек глубоко религиозный. Эйлер объявил, что ему удалось найти доказательство существования бога, которое он охотно изложит Дидро в присутствии всего императорского двора. Дидро согласился на диспут. Эйлер, пользуясь тем, что Дидро совершенно не знал математика, встал и, глядя на своего оппонента, замогильным голосом произнес: «A в квадрате минус B в квадрате равно A минус B, умноженному на A плюс B. Следовательно, бог существует. Вы согласны?» Раздался общий смех, и Дидро совершенно растерялся. Тут же он испросил у императрицы разрешение вернуться на родину и отбыл во Францию.
- Подлинная история времени без ложных вымыслов Стивена Хокинга. Что такое время. Что такое национальная идея - Владимир Бутромеев - Прочая научная литература
- Драматическая медицина. Опыты врачей на себе (с ориг. илл.) - Глязер Гуго - Прочая научная литература
- Запрограммированное развитие всего мира - Исай Давыдов - Прочая научная литература
- Революция отменяется. Третий путь развития - Евгений Скобликов - Прочая научная литература
- Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк - Прочая научная литература