Шрифт:
Интервал:
Закладка:
Предполагается, что события независимы, тогда как на самом деле они зависимы друг от друга. Вероятность выпадания решки при подбрасывании «правильной» монетки равняется ½. Вероятность двукратного (подряд) выпадания решки при подбрасывании такой же монетки составляет (½)2, или ¼, поскольку вероятность одновременного наступления двух независимых событий равняется произведению их индивидуальных вероятностей. Теперь, когда вы вооружены этим важным знанием, допустим, что вас назначили на должность начальника отдела управления рисками в крупной авиакомпании. Ваш заместитель сообщает вам, что вероятность выхода из строя по тем или иным причинам авиадвигателя во время трансатлантического перелета составляет 1 шанс из 100 000. Учитывая количество трансатлантических перелетов, этот риск нельзя считать приемлемым. К счастью, каждый современный самолет, совершающий такие перелеты, оснащен по меньшей мере двумя двигателями. Ваш заместитель подсчитал, что риск одновременного выхода из строя обоих во время трансатлантического перелета должен равняться (1/100 000)2, или 1 шансу из 10 миллиардов, что считается вполне приемлемым риском с точки зрения обеспечения безопасности полетов. Что же, сейчас самое время предложить вашему заместителю взять отпуск и подготовиться к увольнению. Поломка обоих авиадвигателей не относится к категории независимых событий. Если во время взлета самолет наталкивается на стаю гусей, то, вероятнее всего, оба двигателя выйдут из строя одинаковым образом. То же самое можно сказать о многих других факторах, влияющих на функционирование авиадвигателя, начиная с погодных условий и заканчивая небрежным выполнением своих обязанностей наземными службами техобслуживания. Если один двигатель выйдет из строя, то вероятность поломки второго будет значительно выше, чем 1 шанс из 100 000.
Это очевидно, не правда ли? Однако британским прокурорам это показалось не столь очевидным в 1990-е, когда они совершили серьезную судебную ошибку вследствие некорректного использования теории вероятностей. Как и в гипотетическом примере с авиадвигателями, ошибка заключалась в предположении о независимости нескольких событий (как с подбрасыванием монетки), хотя на самом деле они были зависимы (то есть когда какой-то определенный исход повышает вероятность аналогичного исхода в будущем). Тем не менее эта теоретическая ошибка стоила свободы абсолютно невинным людям, которые в результате оказались за решеткой.
Эта история произошла в контексте так называемого синдрома внезапной смерти младенцев во время сна (СВСМ) – явления, когда вполне здоровый малыш умирает в своей кроватке. (У британцев СВСМ принято называть «смертью в колыбели».) Долгое время СВСМ оставался медицинской загадкой, которая привлекала к себе все большее внимание по мере снижения детской смертности по другим причинам[31]. Поскольку СВСМ настолько таинственен и малопонятен, его феномен породил всевозможные подозрения. Иногда они потдверждались. Время от времени ссылки на СВСМ использовались, чтобы скрыть факты небрежного выполнения родительских обязанностей или даже предумышленного убийства, так как вскрытие далеко не всегда позволяет отличить смерть в силу естественных причин от убийства. Британские прокуроры и суды были убеждены, что один из способов правильно определять причины СВСМ – повысить внимание к семьям с повторными случаями «смерти в колыбели». Сэр Рой Мидоу, известный британский педиатр, часто привлекался к рассмотрению подобных случаев в качестве эксперта. Как поясняется в британском журнале The Economist: «Мысль, которая пришла в голову Рою Мидоу и стала впоследствии известной как “закон Мидоу” (суть ее в том, что одна младенческая смерть – это трагедия, две смерти вызывают подозрение, а три – это убийство), основывается на том, что если какое-либо событие является достаточно редким, то два или большее число его наступлений в одной и той же семье настолько маловероятны, что нет никаких оснований считать это простой случайностью»{47}. Сэр Рой Мидоу объяснил присяжным, что вероятность внезапной смерти от естественных причин двух младенцев в одной семье чрезвычайно мала и равняется примерно одному шансу из 73 миллионов. Он толковал свои подсчеты так: поскольку случаи «смерти в колыбели» встречаются довольно редко (1 из 8500), вероятность наступления двух смертей в колыбели в одной и той же семье составляет (1/8500)2, что равняется примерно одному шансу из 73 миллионов. Так что здесь явно попахивает предумышленным убийством. Руководствуясь этими доводами, присяжные выносили свои вердикты. В результате, основываясь на статистике смертей в колыбели, присяжные отправили за решетку немалое число родителей (зачастую без учета каких-либо медицинских свидетельств, указывающих на их неумелое обращение с ребенком). В некоторых случаях у родителей, относительно которых возникали подозрения, вызванные необъяснимой смертью кого-либо из их детей в младенческом возрасте, последующих детей отбирали сразу же после рождения.
The Economist объясняет, каким образом неправильная трактовка статистической независимости могла привести к ошибочным выводам в докладе, с которым Мидоу выступал перед присяжными:
Как указывает Королевское статистическое общество (Royal Statistical Society), в рассуждениях Мидоу есть очевидный изъян. Выполненный им подсчет вероятности был бы правильным, если бы смерти в колыбели носили совершенно случайный характер и не были бы связаны с каким-то неизвестным фактором. Но когда речь идет о столь загадочном феномене, как смерть в колыбели, вполне возможно наличие какой-то связи, например некоего генетического фактора, вследствие действия которого угроза потерять по той же причине еще одного ребенка в семье, уже лишившейся одного малыша, гораздо выше, (а не ниже), чем в семьях, где таких случаев не зафиксировано. После того как в результате повторных смертей в колыбели многие родители оказались за решеткой, ученые поверили в реальность существования такой связи.
В 2004 году британское правительство объявило о предстоящем пересмотре 258 приговоров, согласно которым родители, обвинявшиеся в умышленном лишении жизни своих детей, отбывают тюремный срок.
Непонимание, когда события ДЕЙСТВИТЕЛЬНО независимы друг от друга. Еще одна разновидность ошибок возникает, когда события, действительно независимые друг от друга, рассматриваются как взаимосвязанные. Если вы когда-либо окажетесь в казино (место, в котором, с точки зрения статистики, вам лучше вообще не появляться), то обязательно увидите людей, вперившихся взглядом в игральные кости или карты и заявляющих, что они «ожидают должное». Если шарик рулетки пять раз подряд остановился на черном поле, то всякому здравомыслящему человеку понятно, что на следующий раз должно выпасть красное. Нет, нет и еще раз нет! Вероятность того, что шарик остановится на красном поле, каждый раз будет одной и той же: 16/38. Уверенность в том, что это вовсе не так, иногда называют «заблуждением игрока». В действительности, если «правильную» монетку подбросить 1 000 000 раз и каждый раз будет выпадать решка, то вероятность того, что на 1 000 001-й раз выпадет орел, по-прежнему останется ½. Само определение статистической независимости двух событий заключается в том, что исход одного события никак не сказывается на исходе другого. Даже если статистика не убеждает вас, обратитесь к физике соответствующего явления: каким образом выпадание решки несколько раз подряд может повлиять на вероятность выпадания орла в результате следующего подбрасывания монетки?[32]
Даже в спорте представление о полосе удач и неудач может оказаться иллюзорным. В одной из самых знаменитых и интересных научных статей, посвященных вероятностям, опровергается общепринятое утверждение о том, что в течение одной игры у баскетболистов периодически возникает некая «полоса везения», когда один за другим следуют удачные броски по кольцу (в таких случаях говорят, что игрок «набил себе руку»). Несомненно, большинство спортивных болельщиков станут вас уверять, что игрок, попавший по кольцу, с большей вероятностью попадет по нему при выполнении следующего броска, чем игрок, «промазавший» перед этим. Однако исследование, проведенное Томасом Гиловичем, Робертом Валлоне и Амосом Тверски, которые протестировали феномен «набитой руки» тремя разными способами, говорит об обратном{48}. Во-первых, они проанализировали данные о результатах бросков, сделанных в ходе домашних игр командой НБА «Филадельфия Севенти Сиксерс» (сезон 1980–1981 годов). (На момент его проведения аналогичные данные для других команд НБА отсутствовали.) И «не обнаружили каких-либо свидетельств положительной корреляции между результатами бросков, следующих друг за другом». Во-вторых, они проделали такое же исследование относительно результатов штрафных бросков в команде «Бостон Селтикс» и пришли к аналогичным выводам. Наконец, они провели управляемый эксперимент с членами мужской и женской баскетбольных команд Корнелльского университета, игроки которых в среднем попадали по кольцу с игры в 48 случаях из 100, когда предыдущий бросок игрока был удачным, и в 47 случаях из 100, когда предыдущий бросок был неудачным. Для четырнадцати игроков в возрасте 26 лет корреляция между результатом выполнения одного броска и результатом выполнения следующего броска оказалась отрицательной. Лишь у одного баскетболиста обнаружилась значительная положительная корреляция между результатом выполнения двух следующих друг за другом бросков.