Свойства ферментов
Одним из наиболее важных отличий ферментов от неорганических катализаторов является их высокая специфичность к субстрату. Особенностью биокатализаторов является способность ускорять реакцию только с определенным субстратом или группой сходных по строению субстратов. Немецкий ученый Э. Фишер, исследуя эту удивительную избирательность ферментов, высказал предположение о наличии в их молекуле некоторого участка, структура которого строго соответствует структуре субстрата. Его выражение: «субстрат подходит к ферменту, как ключ к замку» — определило одно из самых важных свойств ферментов — специфичность по отношению к субстрату.
Например, в организме животных и человека отсутствует фермент, расщепляющий целлюлозу, но крахмал и гликоген легко подвергаются гидролизу ферментом амилазой. Разница в строении этих углеводов состоит только в том, что молекула первого вещества состоит из остатков β-глюкозы, а молекулы двух других — из остатков а-глюкозы. Фермент амилаза действует на α-гликозидную связь в молекуле крахмала, гликогена, мальтозы, но не действует на β-гликозидную связь в целлюлозе.
Фермент трипсин расщепляет как природный белок, так и искусственный полипептид, так как действует на пептидную связь. Эти ферменты обладают групповой специфичностью, так как действуют на вещества с одинаковой связью.
Однако есть такие ферменты, которые катализируют реакцию только с одним-единственным веществом.
Строение ферментов
Каждый фермент имеет определенное строение. Как и у всех белков, оно зависит от его первичной структуры, которая определяет третичную и четвертичную структуры, т. е. форму глобулы и ее пространственную конфигурацию. Результаты исследований показали, что молекулы ферментов во много раз больше, чем молекулы веществ, которые они активируют в реакциях. Ферменты, как правило, являются глобулярными белками. Часто они образуют комплексы с небелковыми компонентами: металлами (цинком, железом, марганцем, медью и др.), низкомолекулярными органическими соединениями, витаминами. Например, в состав каталазы входит железо; витамин B3 (или PP) является компонентом окислительно-восстановительных ферментов; витамин В, входит в состав ферментов, отщепляющих углерод от молекул органических соединений.
Ферменты, как вещества белковой природы, имеют большую молекулярную массу, которая колеблется от нескольких тысяч до миллиона. Например, трипсин имеет молекулярную массу 40 000, а синтетаза высших жирных кислот (ВЖК), катализирующая синтез жирных кислот, относится к ферментам-гигантам с молекулярной массой более 1 000 000. Она состоит из целого конвейера белков, объединенных в одну суперструктуру. Как правило, для высокомолекулярных ферментов характерна четвертичная структура. Например, фермент каталаза, расщепляющий пероксид водорода, состоит из шести субъединиц.
В ферменте различают три центра: субстратный, активный и регуляторный (рис. 5). Непосредственно в реакции участвует лишь небольшая часть белковой молекулы, состоящая обычно от 3 до 15 остатков аминокислот. Это каталитический, или активный, центр фермента. Остальные аминокислоты белка определяют конфигурацию молекулы, связывают субстрат, присоединяют дополнительные ионы. Активный центр является главной частью фермента. Здесь происходит видоизменение субстрата, собственно реакция, образуются продукты или продукт. В некоторых случаях функции активного центра выполняет небелковый компонент, например витамин, который в этом случае связан с ферментом и составляет единое целое.
Рис. 5. Строение фермента: 1 — субстратный центр; 2 — активный центр; 3 — регуляторный центр
Субстратный центр служит «якорной» площадкой для соединения фермента с субстратом. При этом между ними возникают определенные связи, позволяющие ферменту удерживать субстрат. Активный и субстратный центры ферментов часто находятся рядом или совпадают.
Для работы этих центров, т. е. присоединения субстрата и катализа реакции, необходима определенная форма белка-фермента. Фермент сохраняет свою активность до тех пор, пока в нем поддерживается специфическая конфигурация каталитического центра, что связано с третичной и четвертичной структурами белка.
Конфигурация белковой молекулы может изменяться таким образом, чтобы обеспечить быстрый доступ веществ в активный центр или, наоборот, затормозить реакцию. Эту функцию выполняет регуляторный центр фермента. К нему могут присоединяться неорганические ионы, низкомолекулярные вещества, которые видоизменяют форму молекулы фермента таким образом, чтобы способствовать быстрому соединению с субстратом или, наоборот, невозможности соединения.
Механизм действия фермента
Рассмотрим общий принцип действия ферментов. В начале реакции происходит соединение фермента (Е) с субстратом (S), в результате образуется фермент-субстратный комплекс (Е — S). Далее в активном центре фермента происходят преобразования субстрата, изменяются связи в молекуле субстрата, конфигурация фермента. На первом этапе образуется комплекс фермента с видоизмененным субстратом (E* — S*). Далее в активном центре происходит собственно реакция и образуется фермент-продуктный комплекс (Е* — Р). После окончания реакции комплекс распадается, освобождается продукт (или продукты), а фермент вновь восстанавливается, каким был до начала реакции (Е, Р). Теперь он готов к новой реакции (рис. 6). Процесс можно представить в виде схемы:
фермент + субстрат фермент-субстрат фермент-продукт фермент + продукт
Е + S E — S E* — S* Е* — Р Е + Р
Рис. 6. Механизм действия фермента: 1 — фермент; 2 — субстрат; 3 — фермент-субстратный комплекс; 4 — фермент-продуктный комплекс; 5 — освобожденный продукт
На скорость ферментативных реакций могут оказывать влияние различные факторы. Известно, что скорость химических реакций зависит, прежде всего, от концентрации веществ. У ферментативных реакций есть особенность. Их скорость зависит не столько от концентрации субстрата, сколько от концентрации фермента. Скорость реакции прямо пропорциональна концентрации фермента. Это связано с тем, что количество молекул фермента определяет, как быстро будет протекать реакция.
Скорость реакции и активность фермента зависят от температуры, причем она уменьшается как при низких, так и при высоких температурах. При низких температурах слишком мала энергия активации молекул субстрата и фермента. При высоких температурах белки-ферменты денатурируют, т. е. сворачиваются и полностью разрушаются. Оптимальным считается температурный интервал от 25 до 4 °C.
На активность фермента и скорость реакции влияет различная концентрация ионов H+ и OH-, т. е. pH среды. Большинство ферментов активны в узких пределах pH, чаще в нейтральной среде. Сдвиг концентрации ионов водорода может изменить электрический заряд белка-фермента, что приведет к изменению конфигурации молекулы и падению активности. Некоторые ферменты могут катализировать реакции в слабощелочной среде, например амилаза слюны, а другие — в кислой среде, например фермент желудка пепсин. Перепады pH среды также вызывают денатурацию фермента, но она, как правило, в клетках обратима.
На скорость реакции и активность ферментов могут влиять и различные низкомолекулярные вещества. Активаторами ферментов являются ионы некоторых металлов. Они могут соединяться с регуляторным центром фермента, изменять его конфигурацию и повышать активность. Некоторые ферменты работают только в присутствии определенных ионов.
Ингибиторы, наоборот, замедляют или совсем прекращают работу ферментов. Ингибирование может быть двух типов: конкурентное и неконкурентное (рис. 7). При конкурентном ингибировании низкомолекулярное вещество, сходное по строению с субстратом, связывается с активным или субстратным центром фермента. Однако ингибитор расщепляться ферментом не может, он лишь блокирует доступ настоящего субстрата, являясь его конкурентом. Неконкурентный ингибитор не похож на субстрат и не может занять его место в активном центре. Но он легко присоединяется к регуляторному центру фермента, изменяет его конфигурацию таким образом, что доступ субстрата в активный центр становится невозможным.
Рис. 7. Действие ингибиторов и активаторов на фермент: I — действие неконкурентного ингибитора Б приводит к изменению конфигурации белка, и субстрат не может присоединиться к активному центру фермента; 2 — конкурентный ингибитор В занимает место субстрата в активном центре и блокирует его, но реакция не идет из-за несоответствия вещества конфигурации активного центра; 3 — действие активатора А так изменяет конфигурацию фермента, что субстрат легко присоединяется к активному центру, реакция происходит и продукты освобождаются