Читать интересную книгу Черные дыры и складки времени. Дерзкое наследие Эйнштейна - Кип Торн

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 25 26 27 28 29 30 31 32 33 ... 153

Обнаружив посредством таких измерений, что их вселенная искривлена, плоскатики могут начать строить предположения о существовании трехмерного пространства, в котором находится их двумерная вселенная или в которое она вложена.

Они могут назвать это трехмерное пространство гиперпространством и фантазировать о его свойствах. Например, они могут предположить, что оно плоское в евклидовом смысле, т. е. параллельные прямые в нем никогда не пересекаются.

Нам с вами представить такое гиперпространство совсем несложно — это наше обычное трехмерное пространство. Однако плоскатикам сделать это было бы очень непросто. Более того, у них не было бы никакой возможности проверить, существует ли это гиперпространство на самом деле, ведь ни выйти из своей двумерной вселенной, ни бросить взгляд наружу из нее они не могут. Для них гиперпространство навсегда осталось бы лишь гипотезой.

Это третье измерение гиперпространства не имеет никакого отношения ко времени плоскатиков, которое они также могли бы назвать третьим измерением. В общей сложности, размышляя о гиперпространстве, плоскатики оперировали бы четырьмя измерениями: двумя пространственными измерениями своей вселенной, одним временным и одним дополнительным пространственным измерением гиперпространства.

Мы с вами — объемные существа и живем в трехмерном пространстве. Если бы мы провели исследования геометрии нашего пространства внутри и вблизи звезды шварцшильдовской геометрии, мы обнаружили бы, что оно искривлено, подобно тому, как в нашем примере была искривлена вселенная плоскатиков.

Можно строить предположения о высших измерениях — плоском гиперпространстве, в которое вложено наше искривленное трехмерное пространство. Оказывается, такое гиперпространство должно быть шестимерным, чтобы в него можно было вложить искривленное трехмерное пространство, подобное нашему (а если вспомнить, что наша Вселенная имеет еще временное измерение, всего измерений оказывается семь).

Наглядно изобразить наше трехмерное пространство, вложенное в шестимерное гиперпространство, мне ничуть не легче, чем плоскатикам — свое двумерное, вложенное в трехмерное. Однако существует прием, который окажет нам неоценимую помощь (см. рис. 3.3).

Рис. 3.3 иллюстрирует мысленный эксперимент: тонкий лист разрезает звезду в плоскости ее экватора так, что совершенно одинаковые половинки звезды оказываются сверху и снизу. Хотя этот лист на рисунке кажется плоским, на самом деле он таким не является. Массивная звезда искривляет трехмерное пространство внутри и вокруг звезды, но изобразить это искривление на обычном рисунке

3. ЧЕРНЫЕ ДЫРЫ ОТКРЫТЫ И ОТВЕРГНУТЫ Физическое пространство

Звезда/ Экваториальная Гиперпространство плоскость3.3. Кривизна трехмерного пространства внутри и вокруг звезды (слева вверху) и ее представление на вложенной диаграмме (справа внизу). Эта кривизна предсказывается шварцшильдовским решением уравнения Эйнштейна

(рис. 3.3, слева) невозможно. Это искривление выгибает лист, но на этом рисунке изгиб не виден. Однако мы можем исследовать форму искривления, если будем проводить геометрические измерения в нашем трехмерном пространстве, точно так же, как их делали плос-катики в своей двумерной вселенной. Такие измерения покажут, что существуют прямые, изначально параллельные линии, которые пересекаются в центре звезды, что длина любой окружности вблизи или внутри звезды меньше, чем ее диаметр, умноженный на число п, и что сумма внутренних углов любого треугольника в этой области больше 180°. Все эти свойства искривленного пространства предсказываются шварцшильдовским решением уравнения Эйнштейна.

Чтобы представить наглядно шварцшильдовскую кривизну, мы можем, подобно плоскатикам, мысленно перенести лист из искривленного трехмерного пространства нашей реальной Вселенной в воображаемое плоское гиперпространство (см. справа внизу на рис. 3.3). В этом не искривленном гиперпространстве лист может сохранить свою форму, лишь выгнувшись в том месте, где была звезда. Такие изображения двумерных поверхностей, взятые из нашей искривленной Вселенной и помещенные в гипотетическое плоское трехмерное пространство, и называются вложенными диаграммами.

Не следует поддаваться искушению отождествить третье измерение гиперпространства с третьим пространственным измерением нашей Вселенной. Третье измерение в гиперпространстве не имеет к измерениям нашего пространства никакого отношения. Это измерение, в которое мы не можем перейти и из которого не можем

получить никакой информации; оно чисто вымышленное. Зато с его помощью мы сможем наглядно представить геометрию нашего искривленного пространства, пространства, где существуют черные дыры, гравитационные волны, сингулярности и червоточины (см. главы 6, 7, 10, 13 и 14).

Как показывает вложенная диаграмма на рис. 3.3, шварцшильдов-ская геометрия листа, взятого из экваториальной плоскости звезды, качественно такая же, как и у двумерного пространства и в нашем примере с плоскатиками: внутри звезды она искривлена и имеет чашеобразную форму, вдали от звезды она становится плоской. Так же как и большой круг в углублении двумерного пространства (рис. 3.2), окружность звезды, деленная на ее диаметр, здесь оказывается меньше, чем п. Для нашего Солнца отношение длины окружности к диаметру оказывается меньше п на несколько миллионных долей; другими словами, пространство внутри Солнца плоское с точностью до нескольких долей миллиона. Тем не менее, если Солнце, сохраняя свою массу, будет становиться все меньше и меньше, кривизна внутри будет становиться больше и больше, впадина на вложенной диаграмме (рис. 3.3) будет становиться все глубже и глубже, и отношение длины его окружности к диаметру может стать гораздо меньше п.

Поскольку пространство различно в различных системах отсчета («ваше пространство — это смесь моего пространства и моего времени, если мы движемся друг относительно друга»), особенности кривизны пространства у звезды будут отличаться при наблюдении из системы отсчета, которая движется с большой скоростью относительно звезды, и из системы, которая относительно ее покоится. В быстро движущейся системе отсчета звезда будет несколько сплющена в направлении, перпендикулярном направлению движения, а вложенная диаграмма будет похожа на рис. 3.3, с той разницей, что углубление будет сжато с боков и вытянуто. Это сплющивание в искривленном пространстве и есть сокращение размеров, которое Фицджеральд открыл во вселенной без гравитации (см. главу 1).

Шварцшильдовское решение уравнения поля Эйнштейна описывает не только кривизну пространства, но и искривление времени вблизи звезды, искривление, создаваемое ее гравитацией. В системе отсчета, которая покоится относительно звезды, это искривление в точности соответствует гравитационному замедлению времени, обсуждавшемуся в главе 2 (Врезка 2.4 и соответствующее обсуждение).

Вблизи поверхности звезды время течет медленнее, чем вдали от нее, и еще медленнее течет оно в ее центре.

В случае Солнца искривление времени очень мало: у поверхности замедление составляет примерно 2 миллионные доли (64 секунды в год) по сравнению с его течением вдали от Солнца, а в его центре эта величина достигает лишь одной стотысячной доли (5 минут в год). Однако если предположить, что при постоянной массе Солнце вдруг начнет сжиматься так, что его поверхность будет приближаться к центру, гравитация будет становиться сильнее, и замедление времени будет расти.

Одним из следствий этого искривления времени является гравитационное красное смещение света, излучаемого с поверхности звезды. Поскольку частота световых колебаний связана с течением времени в том месте, где они излучаются, на Земле свет, испущенный атомами у поверхности Солнца, будет иметь меньшую частоту, чем испускаемый такими же атомами межзвездного пространства. Смещение частоты в точности будет равно замедлению времени. Уменьшение частоты означает увеличение длины волны, поэтому спектр излучения звезды будет смещен в красную область на ту же величину, на которую замедляется время на поверхности звезды.

На поверхности Солнца замедление времени составляет 2 миллионные доли, соответственно, гравитационное красное смещение также должно быть равно 2 миллионные доли. Эта величина была слишком мала, чтобы этот эффект можно было обнаружить во времена Эйнштейна, однако в начале шестидесятых годов XX века технология достигла уровня эйнштейновских законов гравитации: Джим Браулт из Принстонского университета в ходе чрезвычайно точного эксперимента измерил величину красного смешения для солнечного света, и она оказалась в хорошем соответствии с предсказаниями Эйнштейна.

1 ... 25 26 27 28 29 30 31 32 33 ... 153
На этом сайте Вы можете читать книги онлайн бесплатно русская версия Черные дыры и складки времени. Дерзкое наследие Эйнштейна - Кип Торн.

Оставить комментарий