Читать интересную книгу Материаловедение. Шпаргалка - Елена Буслаева

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 22 23 24 25 26 27 28 29 30 31

Арматуры, бензо– и маслосистемы, а также сварные детали изготавливают из деформируемых сплавов МА1, высоконагруженные детали – из МА14.

47. Титан и его сплавы

Титан и сплавы на его основе обладают высокой коррозионной стойкостью и удельной прочностью. Недостатки титана: его активное взаимодействие с атмосферными газами, склонность к водородной хрупкости.

Азот, углерод, кислород и водород, упрочняя титан, снижают его пластичность, сопротивление коррозии, свариваемость. Титан плохо обрабатывается резанием, удовлетворительно – давлением, сваривается в защитной атмосфере. Широкое распространение получило вакуумное литье, в том числе вакуумно-дуговой переплав с расходуемым электродом.

Аллотропические модификации титана: низкотемпературная и высокотемпературная.

Различают две основные группы легирующих элементов в зависимости от их влияния на температуру полиморфного превращения титана (882,5 °C): б-стабилизаторы (элементы, расширяющие область существования б-фазы и повышающие температуру превращения – А1, Оа, С) и в-стабилизаторы (элементы, суживающие б-область и снижающие температуру полиморфного превращения, – V, Мо, Сг).

Легирующие элементы делятся на две основные группы: элементы с большой (в пределе – неограниченной) и ограниченной растворимостью в титане. Элементы с ограниченной растворимостью вместе с титаном могут образовывать интерметаллиды, силициды и фазы внедрения.

Легирующие элементы влияют на эксплуатационные свойства титана (Ре, А1, Мп, Сг), повышают его прочность, но снижают эластичность и вязкость; А1, Zr увеличивают жаропрочность, а Мо, Zr, Та – коррозионную стойкость.

Классификация титановых сплавов. Структура промышленных сплавов титана – это твердые растворы легирующих элементов в б– и в-модификациях титана.

Виды термической обработки титановых сплавов.

Рекристаллизационный (простой) отжиг холоднодеформированных сплавов (650–850 °C).

Изотермический отжиг (нагрев до 780–980 °C с последующим охлаждением в печи до 530–680 °C, выдержка при этой температуре и охлаждение на воздухе), обеспечивающий высокую пластичность и термическую стабильность сплавов.

Двойной ступенчатый отжиг (отличается от изотермического тем, что переход от первой ступени ко второй осуществляется охлаждением сплава на воздухе с последующим повторным нагревом до температуры второй ступени), приводящий к упрочнению сплава и снижению пластичности за счет частичного протекания процессов закалки и старения.

Неполный отжиг при 500–680 °C с целью снятия возникающих при механической обработке остаточных напряжений.

Упрочняющая термическая обработка. Большинство титановых сплавов легировано алюминием, повышающим жесткость, прочность, жаропрочность и жаростойкость материала, а также снижающим его плотность.

α-титановые сплавы термической обработкой не упрочняются; их упрочнение достигается посредством легирования твердого раствора и пластической деформацией.

(α + β) – титановые сплавы характеризуются смешанной структурой и упрочняются термической обработкой, состоящей из закалки и старения.

Псевдо-β-титановые сплавы характеризуются высоким содержанием β-стабилизаторов и вызванным этим отсутствием мартенситного превращения. Сплавы характеризуются высокой пластичностью в закаленном состоянии и высокой прочностью в состаренном; они удовлетворительно свариваются аргонодуговой сваркой.

Литейные титановые сплавы. По сравнению с деформируемыми литейные сплавы имеют меньшую прочность, пластичность и выносливость, но более дешевы. Сложность литья титановых сплавов обусловлена активным взаимодействием титана с газами и формовочными материалами. Литейные сплавы ВТ5Л, ВТ14Л и ВТЗ-1Л по составу в основном совпадают с аналогичными деформируемыми сплавами (в то же время сплав ВТ14Л дополнительно содержит железо и хром).

Высокими технологическими свойствами обладает сплав ВТ5Л: он пластичен, не склонен к образованию трещин при литье, хорошо сваривается. Фасонные отливки из сплава ВТ5Л работают при температурах до 400 °C. Недостатком сплава является его невысокая прочность (800 МПа). двухфазный литейный сплав ВТ14Л подвергают отжигу при 850 °C вместо упрочняющей термической обработки, резко снижающей пластичность отливок.

Порошковые сплавы титана. Применение методов порошковой металлургии для производства титановых сплавов позволяет при тех же эксплуатационных свойствах, что и у литого или деформируемого материала, добиться снижения до 50 % стоимости и времени изготовления изделий. Титановый порошковый сплав ВТ6, полученный горячим изостатическим прессованием (ГИП), обладает теми же механическими свойствами, что и деформируемый сплав после отжига. Закаленному и состаренному деформируемому сплаву ВТ6 порошковый сплав уступает в прочности, но превосходит в пластичности.

Применение сплавов титана: обшивки самолетов, морских судов, подводных лодок; корпусов ракет и двигателей; дисков и лопаток стационарных турбин и компрессоров авиационных двигателей; гребных винтов; баллонов для сжиженных газов; емкостей для агрессивных химических сред и др.

48. Виды композиционных материалов. Строение, свойства, области применения

Композиционные материалы состоят из двух компонентов, объединенных различными способами в монолит при сохранении их индивидуальных особенностей.

Признаки материала:

– состав, форма и распределение компонентов определены заранее;

– состоят из двух компонентов и более различного химического состава, разделенных границей;

– обладает свойствами, отличными от свойств компонентов, взятых в отдельности;

– однороден в макромасштабе и неоднороден в микромасштабе;

– не встречается в природе, создан человеком.

Компоненты материала различны по геометрическому признаку. Матрицей называют компонент, который обладает непрерывностью по всему объему. Наполнителем – компонент прерывный, армирующий.

В композиционных материалах в качестве матриц используются металлы и их сплавы, полимеры органические и неорганические, керамические материалы. Свойства зависят от физико-химических свойств компонентов и прочности связи между ними. Компоненты для композиционного материала выбирают со свойствами, отличающимися друг от друга. Такие материалы – высокой удельной жесткости и удельной прочности.

Распространенные композиционные материалы с нуль-мерными наполнителями – металлическая матрица из металла или сплава. Композиционные материалы с равномерным распределением частиц упроч-нителя отличаются изотропностью свойств. Композиции, армированные дисперсными частицами получают методами порошковой металлургии.

Композиционные материалы с алюминиевой матрицей на основе алюминия упрочняются частицами А1203, полученные методом прессования алюминиевой пудры с последующим спеканием (САП).

Сплавы САП удовлетворительно деформируются в горячем состоянии, а сплавы САП-1 – и в холодном. САП легко обрабатываются резанием, удовлетворительно свариваются аргонодуговой и контактной сваркой. Из САП выпускают полуфабрикаты в виде листов, профилей, труб, фольги.

Композиционные материалы с никелевой матрицей.

Упрочняющим компонентом являются токсичные частицы диоксида тория (ТИ02) или диоксида гафния (Hf02). Эти материалы обозначаются ВДУ-1 и ВДУ-2 соответственно. Композиционные материалы ВДУ-1 и ВДУ-2 пластичны, деформируются в широком интервале температур различными методами (ковка, штамповка, осадка, глубокая вытяжка). Для соединения деталей из сплавов типа ВДУ применяют высокотемпературную пайку либо диффузионную сварку для предотвращения расплавления. Сплавы ВДУ-2 применяют в авиационном двигателестроении.

Композиционные материалы с одномерными наполнителями упрочняются посредством одномерных элементов в форме нитевидных кристаллов, волокон (проволоки).

Волокна скрепляются матрицей в единый монолит. Матрица служит для защиты упрочняющего волокна от повреждений, является средой, передающей нагрузку на волокна, и перераспределяет напряжения в случае разрыва отдельных волокон.

Композиционные материалы на никелевой матрице

Армированию подвергают жаропрочные никелевые сплавы, чтобы увеличить время их работы и рабочую температуру до 1100–1200 °C. Для армирования никелевых сплавов применяют упрочнители: нитевидные кристаллы, проволоки тугоплавких металлов и сплавов, волокна углерода и карбида кремния.

Эвтектические композиционные материалы – сплавы эвтектического состава. В них упрочняющей фазой являются ориентированные кристаллы, которые образуются при направленной кристаллизации.

Способами направленной кристаллизации получают композиционные материалы на основе Al, Мд, Си, Со, Тк

Эвтектические композиционные материалы на алюминиевой основе

1 ... 22 23 24 25 26 27 28 29 30 31
На этом сайте Вы можете читать книги онлайн бесплатно русская версия Материаловедение. Шпаргалка - Елена Буслаева.

Оставить комментарий