Материаловедение. Шпаргалка - Елена Буслаева

Дорогие читатели!
Здесь доступно чтение Материаловедение. Шпаргалка - Елена Буслаева. Жанр: Техническая литература. Вы имеете возможность бесплатно ознакомиться с полной версией книги на веб-сайте coollib.biz (КулЛиБ) без необходимости регистрации или отправки SMS. Там вы также найдете краткое описание книги, предисловие от автора и отзывы читателей.
0/0
(18+) Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту для удаления материала.
Информация о содержании книги, доступная в интернете. Материаловедение. Шпаргалка - Елена Буслаева:
Шпаргалка содержит краткие и ясные ответы на все основные вопросы, предусмотренные государственным образовательным стандартом и учебной программой по дисциплине «Материаловедение». Издание может быть полезно всем студентам технических вузов, изучающим Дисциплину «Материаловедение».
Читать интересную книгу Материаловедение. Шпаргалка - Елена Буслаева

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 31

Елена Михайловна Буслаева

Материаловедение

1. Предмет материаловедения; современная классификация материалов, основные этапы развития материаловедения

Материаловедение изучает состав, структуру, свойства и поведение материалов в зависимости от воздействия окружающей среды. Воздействие бывает тепловым, электрическим, магнитным и т. д. Любой компонент конструкций или сооружений подвергается нагрузкам как со стороны других компонентов, так и со стороны внешней среды.

Классификация материалов: металлические, неметаллические и композиционные материалы. Металлические материалы подразделяются на цветные металлы, порошковые материалы. Неметаллические материалы: резина, стекло, керамика, пластические массы, ситаллы. Композиционные материалы являются составными материалами, в состав которых входят два и более материалов (стеклопластики).

Существует классификация материалов в зависимости от вида полуфабрикатов: листы, порошки, гранулы, волокна, профили и т. д.

Техника создания материалов положена в основу классификации по структуре.

Металлические материалы подразделяются на группы в соответствии с тем компонентом, который лежит в их основе. Материалы черной металлургии: сталь, чугуны, ферросплавы, сплавы, в которых основной компонент – железо. Материалы цветной металлургии: алюминий, медь, цинк, свинец, никель, олово.

Основу современной техники составляют металлы и металлические сплавы. Сегодня металлы являются самым универсальным по применению классом материалов. Для того чтобы повысить качество и надежность изделий, требуются новые материалы. Для решения этих проблем применяются композиционные, полимерные, порошковые материалы.

Металлы – вещества, которые обладают ковкостью, блеском, электропроводностью и теплопроводностью. В технике все металлические материалы называют металлами и делят на две группы.

Простые металлы – металлы, которые имеют небольшое количество примесей других металлов.

Сложные металлы – металлы, которые представляют сочетания простого металла как основы с другими элементами.

Три четверти всех элементов в периодической системе являются металлами.

Материаловедение или наука о материалах получила свое развитие с древнейших времен. Первый этап развития материаловедения начинается со специализированного изготовления керамики. Особый вклад в становление материаловедения в России был сделан М.В. Ломоносовым (1711–1765) и Д.И. Менделеевым (1834–1907). Ломоносов разработал курс по физической химии и химической атомистики, подтвердил теорию об атомно-молекулярном строении вещества. Менделееву принадлежит заслуга разработки периодической системы элементов. Оба ученых немалое внимание уделяли проблеме производства стекла.

В XIX в. вклад в развитие материаловедения внесли Ф.Ю. Левинсон-Лессинг, Е.С. Федоров, В.А. Обручев, А.И. Ферсман, Н.Н. Белелюбский. Начинают производиться новые материалы: портландцемент, новые гипсы, цементные бетоны, полимерные материалы и т. д.

В машиностроении широкое применение получили металлы и сплавы металлов, именно поэтому металловедение является важной частью материаловедения.

Металловедение как наука возникло в России в XIX в, оно является научной основой для разработки новых оптимальных технологических процессов: термической обработки, литья, прокатки штамповки сварки. Сочетание высокой прочности и твердости с хорошей пластичностью, вязкостью и обрабатываемостью, не встречающееся у других материалов, явилось причиной использования металлов в качестве основного конструкционного материала во всех областях техники.

Впервые установил существование связи между строением стали и ее свойствами выдающийся русский ученый П.П. Аносов (1799–1851 гг.), раскрывший давно утраченный секрет изготовления и получения древними мастерами Востока булатной стали, которая идет для производства клинков. Булатная сталь Аносова славилась во всем мире и даже вывозилась за границу. Клинки, которые были изготовлены из этой стали, отличались высокой твердостью и вязкостью. П.П. Аносов считается «зачинателем» производства высококачественной стали, он впервые применил микроскоп для определения строения стали и положил начало изучению закономерной связи между структурой и свойствами сплавов.

Основоположник научного металловедения Д.К. Чернов (1839–1921 гг.), который открыл в 1868 г. фазовые превращения в стали. Открытие Д.К. Черновым критических точек а и b (по современному обозначению А1 и A3) совершило революцию в познании природы металлических сплавов и позволило объяснить ряд «таинственных» явлений, которые происходят при термической обработке сталей.

Огромный вклад в развитие науки о металлах внесли Н.С. Курнаков, А.А. Байков, Н.Т. Гудцов, А.А. Бочнар, Г.В. Курдюмов, С.С. Штейиберг, А.П. Гуляев, а также другие советские ученые.

Большое значение в развитии металловедения и термической обработки имели работы Осмонда (Франция), Зейтца, Бейна и Мейла (США), Таммана и Ганемана (Германия).

В XX веке были достигнуты крупные достижения в теории и практике материаловедения, созданы высокопрочные материалы для инструментов, разработаны композиционные материалы, открыты и использованы свойства полупроводников, совершенствовались способы упрочнения деталей термической и химико-термической обработкой.

2. Зеренное строение металлов. Границы зерен и субзерен

Металлы – это поликристаллические тела, они состоят из мелких кристаллов. Характеризуются металлическими свойствами и составляют 50 % всех химических элементов. Строение металлов и их сплавов кристаллическое.

В процессе кристаллизации кристаллы приобретают неправильную форму. Их называют зернами. Каждое зерно имеет свою ориентировку кристаллической решетки, которая отличается от ориентировки соседних зерен. Размер зерна металла влияет на его механические свойства. Данные свойства, вязкость и пластичность, значительно выше, если металл имеет мелкое зерно.

Поверхности раздела зерен называются границами зерен, которые могут быть: наклонными при расположении оси вращения в той же плоскости, что и граница; кручеными при перпендикулярно расположенной оси к плоскости. Такой кусок металла является поликристаллом. Границы зерен определяются точками соприкосновения смежных кристаллов. О размерах, структуре и характере строения зерен можно судить по изломам металла.

В поликристаллических материалах размер зерен от 1 до 1000 мкм. Зерна разориентированы, повернуты одни относительно других до десятков градусов. Границы являются основным дефектом в металлах. На границах между зернами атомы не имеют правильного расположения. Существует переходная область шириной в несколько атомных диаметров, в которой решетка одного зерна переходит в решетку другого зерна с иной ориентацией. Строение переходного слоя (границы) способствует скоплению в нем дислокаций, так как при переходе через границу ни плоскость скольжения, ни вектор Бюргерса не сохраняются неизменными. Нарушение правильности расположения способствует тому, что на границах зерен повышена концентрация тех примесей, которые понижают поверхностную энергию. Внутри зерен нарушается правильное кристаллическое строение.

Границы субзерен менее нарушены.

Все металлы имеют общие свойства: пластичность, высокую тепло– и электропроводность, специфический металлический блеск, повышают электросопротивление с ростом температуры.

Из жидкого расплава вырастает монокристалл, который представляет собой один кристалл. Размеры монокристаллов невелики, их используют в лабораториях для изучения свойств какого-либо вещества. Металлы и сплавы, которые получают в самых обычных условиях, состоят из большого количества кристаллов, они имеют поликристаллическое строение.

Изучение строения металлов с помощью рентгеноструктурного анализа и электронного микроскопа позволило установить, что внутреннее кристаллическое строение зерна не является правильным. В кристаллических решетках реальных металлов имеются различные дефекты (несовершенства), которые нарушают связи между атомами и оказывают влияние на свойства металлов. Все дефекты решетки – это нарушения укладки атомов в решетке.

Расположение атомов в решетке может быть в форме центрированного куба (б– и в-железо, б-титан, хром, молибден, вольфрам, ванадий), куба, грани которого центрированы (г-железо, алюминий, медь, никель, свинец, в-кобальт) или гексагональны, или в форме ячейки (магний, цинк).

Зерна в поликристаллах не являются монолитными, а состоят из отдельных субзерен, которые повернуты одно относительно другого на малый угол. Субзерно является многогранником, в котором содержится либо незначительное количество дислокаций, либо их совсем нет. Основные характеристики субзерен: тип, расположение, строение, плотность дислокаций. Многие дислокации образуются в результате механического сдвига.

1 2 3 4 5 6 7 8 9 10 ... 31
На этом сайте Вы можете читать книги онлайн бесплатно русская версия Материаловедение. Шпаргалка - Елена Буслаева.
Книги, аналогичгные Материаловедение. Шпаргалка - Елена Буслаева

Оставить комментарий