Читать интересную книгу 2. Пространство. Время. Движение - Ричард Фейнман

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 16 17 18 19 20 21 22 23 24 25

Момент инерции имеет еще одно очень важное и интересное свойство (я не буду доказывать его здесь, так как это очень сложно), которое легко описать и использовать. Наше предыду­щее рассмотрение основано именно на этом свойстве. Оно со­стоит в следующем: любое твердое тело, даже неправильной формы, как, например, картошка, имеет такие три взаимно перпендикулярные проходящие через центр масс оси, что мо­мент инерции относительно одной из них имеет наибольшую возможную величину из всех осей, проходящих через центр масс, а момент инерции относительно другой оси имеет наимень­шую величину. Момент инерции относительно третьей имеет какую-то промежуточную величину между двумя первыми или равную одной из них. Эти оси, называемые главными осями тела, обладают тем важным свойством, что, если тело вращается вокруг одной из них, его момент количества движения имеет то же направление, что и угловая скорость. Если тело имеет оси симметрии, то направление главных осей совпадает с осями симметрии.

Если в качестве осей х, у и z выбрать главные оси тела и назвать соответствующие моменты инерции через А, В и С, то нетрудно подсчитать момент количества движения и кинети­ческую энергию вращения тела при любой угловой скорости w (фиг. 20.7).

Фиг. 20.7. Угловая скорость и мо­мент количества движения твер­дого тела (А>В>С),

Разлагая w на компоненты wx, wy, и wгпо осям х, у и z и используя направленные вдоль этих осей единичные векторы i, j, k, можно записать момент количества движения в виде

причем кинетическая энергия будет равна

* Что это действительно так, доказывается с помощью рассмотрения перемещения частиц твердого тела за бесконечно малый промежуток вре­мени Dt. Это не самоочевидно, и я предоставляю тем, кто интересуется, доказать это.

1 ... 16 17 18 19 20 21 22 23 24 25
На этом сайте Вы можете читать книги онлайн бесплатно русская версия 2. Пространство. Время. Движение - Ричард Фейнман.

Оставить комментарий