Шрифт:
Интервал:
Закладка:
Глава 19
ЦЕНТР МАСС; МОМЕНТ ИНЕРЦИИ
§ 1. Свойства центра масс
§ 2. Положение центра масс
§ 3. Вычисление момента инерции
§ 4. Кинетическая энергия вращения
§ 1. Свойства центра масс
В предыдущей главе мы установили факт существования некоторой замечательной точки, называемой центром масс. Она замечательна тем, что если на частицы, образующие тело (неважно, будет ли оно твердым или жидким, звездным скоплением или чем-то другим), действует великое множество сил (конечно, имеются в виду только внешние силы, поскольку все внутренние силы компенсируют друг друга), то результирующая сила приводит к такому ускорению этой точки, как будто в ней сосредоточена вся масса тела М. Давайте теперь обсудим свойство центра масс несколько подробнее.
Положение центра масс (сокращенно ц. м.) определяется уравнением
Это, разумеется, векторное уравнение, т. е. фактически три уравнения — по одному для каждого из трех направлений. Но мы будем рассматривать только x-направление; если вы поймете, что происходит в x-направлении, то поймете и два остальных. Что означает равенство Хц.м.=Smixi/Smi? Предположим на минуту, что тело разделено на маленькие кусочки с одинаковой массой m, причем полная масса будет равна числу таких кусочков N, умноженному на массу одного кусочка, скажем 1 г, или какую-то другую единицу. Тогда наше уравнение просто означает, что нужно взять координаты х всех кусочков, сложить их и результат разделить на число кусочков, т. е. Xц.м.=mSxi/mN=Sxi/N. Иными словами, если массы кусочков равны, то Хц. м.- будет просто средним арифметическим x-координат всех кусочков. Но предположим, что один из кусочков вдвое тяжелее, чем каждый из остальных. Тогда в нашу формулу его координата будет входить с коэффициентом 2, т. е. в суммах ее нужно учитывать дважды. Нетрудно понять, почему это происходит. Ведь тяжелый кусочек можно представить себе как бы состоящим из двух легких, таких же, как и все остальные, так что, когда мы вычисляем среднее, его координату х нужно учитывать дважды: ведь кусочков-то в этом месте два. Таким образом, Хц.м.равно просто среднему арифметическому х-координат всех масс, причем каждая координата считается некоторое число раз, пропорциональное массе, как будто она разделена на маленькие кусочки единичной массы. Исходя из этого, легко доказать, что Хц.м. должна находиться где-то между самой близкой и самой далекой частичкой. Вообще центр масс должен лежать где-то внутри многогранника, проведенного через крайние точки тела. Однако вовсе не обязательно, чтобы центр масс находился в самом теле; ведь могут быть тела, подобные окружности, например обруч, центр масс которого находится в геометрическом центре, а не на самом обруче.
Конечно, если объект симметричен, например прямоугольник, обладающий линией симметрии, то его центр масс должен лежать где-то на этой линии. Кстати, прямоугольник имеет еще одну линию симметрии и это однозначно определяет положение его центра масс. Для просто симметричного объекта центр масс должен лежать где-то на оси симметрии: ведь отрицательных х в этом случае ровно столько же, сколько и положительных.
Существует еще один очень забавный способ нахождения центра масс. Вообразите
себе тело, состоящее из двух кусков А и В (фиг, 19.1).
Фиг. 19.1. Центр масс сложного тела лежит на линии, соединяющей центры масс двух составляющих его частей.
Центр масс в этом случае можно найти следующим образом. Находим сначала отдельно центры масс составных частей А и В и их полные массы МАи МB. После этого находим центр масс двух точечных тел, одно из которых имеет массу МАи расположено в центре масс части А, а другое — массу МBи расположено в центре масс части В, Полученная точка и будет центром масс всего тела. Другими словами, если нам известны центры масс всех частей сложного тела, то, чтобы найти его центр масс, не нужно повторять все сначала, а достаточно просто найти центр масс системы точечных тел с массами, равными массам каждой из частей и расположенными в их центрах масс. Посмотрим, как это получается. Пусть мы хотим определить центр масс сложного тела, одни из частиц которого принадлежат части А, а другие — части В. При этом мы можем разбить полную сумму Smixi на сумму по части А, т. е. SAmixi и сумму по части В, т. е. SBmixi. Если бы мы находили центр масс только части А, то нам потребовалась бы первая из этих сумм, которая, как вы знаете, равна МАХА, т. е. полной массе части А на x-координату ее центра масс: это просто следствие теоремы о центре масс, примененной к части A. То же самое можно сказать и о части В. Сумма SBmixiдолжна быть равна МВХВ. Сложив эти два результата, мы, конечно, должны получить MX, т. е.
МХц.м.=Smixi+Smixi=МАХА+МВХВ. (19.2)
Полная же масса М, очевидно, равна МА+МB, так что выражение (19.2) представляет собой не что иное, как определение центра масс двух точек, одна из которых имеет массу МАи координату ХА, а другая — массу МBи координату ХB.
Теорема о движении центра масс интересна не только сама по себе, она еще играет очень важную роль в развитии нашего понимания физики. Если мы предположим, что законы Ньютона верны только для маленьких частей, составляющих большое тело, то эта теорема показывает, что они верны также и для большого тела. Мы можем не знать его детального строения и нам известны лишь общая масса и полная сила, действующая на него. Другими словами, законы Ньютона имеют ту особенность, что если они справедливы в малом масштабе, то справедливы и в большом. Нет никакой нужды рассматривать футбольный мяч как ужасно сложную вещь, состоящую из мириада взаимодействующих частиц, а достаточно изучить только движение его центра масс под действием внешней силы F, чтобы получить F=ma, где а — ускорение центра масс, а m — полная масса мяча. Итак, закон F=ma воспроизводит сам себя в большом масштабе. (Наверное, должно быть какое-нибудь хорошее греческое слово, которым можно было бы назвать подобные воспроизводящие себя в большом масштабе законы.)
Нетрудно, конечно, догадаться, что первый открытый человеком закон должен быть именно таким законом, воспроизводящим самого себя в большом масштабе. Почему? Да просто потому, что истинный размер фундаментальных «винтиков и колесиков» Вселенной есть атомный размер, который настолько меньше размеров окружающих нас вещей, что только сейчас начинает входить в обычную жизнь. Итак, первая открытая человеком закономерность не могла иметь отношения к размерам атомного масштаба. Если бы законы для малых частиц не воспроизводили себя в большом масштабе, то открыть их было бы не так-то легко. А что можно сказать об обратной проблеме? Должны ли законы микромира быть теми же самыми, что и для больших тел? Никакой необходимости в этом, конечно, нет.
Давайте, однако, предположим, что истинное движение атомов описывается неким странным уравнением, которое не воспроизводит себя при переходе к большему масштабу. Вместо этого оно обладает тем свойством, что при таком переходе его можно приближенно заменить каким-то выражением, которое при все большем и большем увеличении масштаба воспроизводит само себя. Это вполне может случиться, и в действительности так оно и происходит. Законы Ньютона являются как бы «кончиком хвоста» атомных законов, продолженных до очень больших размеров. Истинные законы движения частиц очень малых размеров весьма специфичны, но если мы возьмем большое число частиц и скомбинируем законы их движения, то приближенно, и только приближенно, получим законы Ньютона. После этого законы Ньютона позволяют нам двигаться ко все большим размерам, оставаясь при этом теми же самыми законами. В сущности, при переходе ко все большим и большим размерам они все точнее и точнее описывают природу. Так что факт самовоспроизводимости законов Ньютона — отнюдь не фундаментальное свойство природы, а важная историческая особенность.
- Причина СТО – инвариантность скорости света - Петр Путенихин - Математика / Прочая научная литература / Физика
- Фиговые листики теории относительности - О. Деревенский - Физика
- Теория относительности — мистификация ХХ века - Владимир Секерин - Физика