Шрифт:
Интервал:
Закладка:
Я рассказал эту историю в качестве примера, показывающего, как сложно проникать в глубины геологического времени, пользуясь исключительно палеонтологической летописью. Даже если доказать, что в некоторый период уже существовали цианобактерии (по крайней мере, их предки), это еще не означает, что в то время они уже нашли способ расщеплять воду. Возможно, что эти предки пользовались более примитивной формой фотосинтеза. Но есть и другие способы добывать информацию о древности, и эти способы вполне могут оказаться более информативными. Они связаны с тайнами, скрытыми в самих живых организмах: как в их генах, так и в их строении, особенно в структуре их белков.
В последние два-три десятилетия молекулярная структура фотосистем растений и бактерий была предметом пристального внимания ученых. Они с успехом использовали ряд методов с пугающими названиями и столь же пугающей сложности, рентгеноконструктурного анализа до электронного парамагнитного резонанса. Характеристики этих методов не должны нас заботить. Достаточно знать, что эти методы применялись, чтобы выяснить форму и строение фотосинтетических комплексов почти — увы! — на атомарном уровне разрешения. На конференциях спорят и по сей день, но спорят уже о деталях. Незадолго написания этих строк я как раз вернулся с симпозиума в Лондонском королевском обществе. Его участники немало спорили о точном положении пяти ключевых атомов кислород-выделяющего комплекса. Этот спор касался предмета одновременно ничтожного, и необычайно важного. Важного потому, что точным положением этих атомов строго определяется химический механизм расщепления воды, а выяснить это — значит сделать важнейший шаг в направлении решения энергетических проблем человечества. А ничтожного потому, что все пререкания участников касались расхождений в оценках положения этих пяти атомов в пределах пространства размером в несколько диаметров одного атома — в несколько ангстремов (то есть меньше одной миллионной миллиметра). К удивлению исследователей старшего поколения, сейчас почти уже не осталось серьезных разногласий о положении всех остальных 46 630 атомов фотосистемы II, точная структура которой была установлена группой Джима Барбера из Имперского колледжа Лондона в 2004 году (а с тех пор изучена и еще подробнее).
Хотя положение этих нескольких атомов еще предстоит определить, общее устройство фотосистем, свидетельства о котором были получены уже больше десяти лет назад, теперь совершенно ясно и дает нам массу сведений об эволюционной истории этих систем. В 2006 году небольшой группе исследователей, которой Руководил Боб Блэнкеншип (в настоящее время он заслуженный профессор Университета им. Вашингтона в Сент-Луисе), удалось показать, что у бактерий обе фотосистемы необычайно консервативны[24]. Несмотря на огромные эволюционные расстояния, разделяющие группы бактерий, ключевые структуры их фотосистем почти идентичны — до такой степени, что их трехмерные компьютерные модели при наложении полностью совпадут. Кроме того, Блэнкеншип подтвердил наличие еще одной связи, о которой давно подозревали: ключевые структуры фотосистем I и II тоже почти идентичны и почти точно происходят от одной и той же структуры, существовавшей очень, очень давно.
Иными словами, когда-то фотосистема была всего одна. На некотором этапе кодировавшие ее гены удвоились и получилось две одинаковых фотосистемы. Под действием естественного отбора они постепенно отдалялись друг от друга, при этом сохраняя близкое структурное сходство. В итоге фотосистемы объединились в единую Z-схему цианобактерий и впоследствии передались растениям и водорослям с хлоропластами. Но за этой простой историей стоит интереснейшая дилемма. Простое удвоение примитивной фотосистемы не решало проблему кислородного фотосинтеза: оно не могло соединить сильный оттягиватель электронов с сильным отталкивателем. Фотосинтез мог начаться лишь после того, как две фотосистемы разошлись, потому что лишь в этом случае их можно было связать с пользой для дела. Так что вопрос в том, какая последовательность событий могла развести их, чтобы потом вновь соединить в качестве тесно взаимосвязанных, но играющих противоположные роли партнеров (как мужчина и женщина, соединяющиеся после расхождения, сопровождающего их развитие из похожих яйцеклеток).
Лучший способ найти ответ на этот вопрос — обратиться к самим фотосистемам. В Z-схеме цианобактерий они объединены, однако их эволюционная история шла совершенно разными путями, и это в ней особенно интересно. Давайте на время оставим вопрос, как возникли две фотосистемы, и вкратце рассмотрим их нынешнее распространение в мире бактерий.
За исключением цианобактерий, они никогда не встречаются вместе у одной и той же бактерии. У одних групп бактерий есть только фотосистема I, у других — только фотосистема II. Обе они работают самостоятельно, выполняя разные функции, и назначение каждой из них свидетельствует о том, как возник в ходе эволюции кислородный фотосинтез.
Фотосистема I выполняет у бактерий в точности те же функции, что и у растений. Она заимствует электроны из неорганического источника и передает их молекулярному «навязчивому торговцу», который «толкает» их молекулам углекислого газа, чтобы сделать из них молекулы сахара. Разница здесь в неорганическом источнике электронов. У бактерий (кроме цианобактерий) фотосистема I берет электроны не у воды, с которой она не может справиться, а у сероводорода или двухвалентного железа, с которыми иметь дело гораздо проще. Кстати, НАДФ (тот молекулярный «торговец», которому фотосистема I передает электроны) может образовываться и чисто химическим путем, например в гидротермальных источниках, которые мы обсуждали в главе 1. НАДФ тоже используется здесь, чтобы преобразовывать углекислый газ в сахара посредством похожего набора реакций. Так что единственное новшество фотосистемы I состояло в том, что она давала возможность использовать свет для выполнения работы, которая прежде выполнялась чисто химическим путем.
Стоит также отметить, что в способности использовать свет в химических реакциях нет ничего особенного: это могут почти все пигменты. Химические связи пигментов хорошо поглощают фотоны. Когда молекула пигмента поглощает фотон, один из ее электронов забрасывается на более высокий энергетический уровень. Там его могут легко перехватить соседние молекулы других веществ. В результате молекула пигмента становится фотоокисленной: теперь ей нужен электрон, чтобы свести концы с концами, и она может взять его у двухвалентного железа или у сероводорода. Вот и все, что делает хлорофилл. Он относится к классу порфиринов. На хлорофилл довольно похож по строению гем — пигмент, переносящий кислород у нас в крови. Многие другие порфирины способны проделывать со светом трюки вроде тех, что умеет хлорофилл, причем иногда это приводит к печальным последствиям, например, при такой болезни, как порфирия[25]. Особенно же важно, что порфирины относятся к числу тех довольно сложных веществ, молекулы которых удалось выделить из астероидов и синтезировать в лаборатории в условиях, правдоподобно моделирующих пребиотические. Иными словами, в древнейшие времена порфирины, скорее всего, возникали на Земле самопроизвольно.
Короче говоря, фотосистема I взяла довольно простой пигмент класса порфиринов и воспользовалась его умением самопроизвольно поглощать свет, становясь химически активным, в реакциях, которые в любом случае происходят в бактериальных клетках. Получилась примитивная форма фотосинтеза, позволявшая использовать свет для получения электронов из «простых» источников вроде двухвалентного железа или сероводорода, и передавать эти электроны углекислому газу, чтобы получать из него сахара. Так эти бактерии научились использовать свет, чтобы кормиться.
А как обстоят дела с фотосистемой II? Бактерии, использующие ее, выполняют с помощью света другой трюк. Эта форма фотосинтеза не осуществляет синтез органических веществ из углекислого газа. Она преобразует энергию света в химическую энергию, то есть, по сути, в электричество, которое можно использовать на различные энергетические нужды клетки. Механизм очень простой. Когда на молекулу хлорофилла падает фотон, один электрон забрасывается на более высокий энергетический уровень, где его перехватывает соседняя молекула другого вещества. После этого электрон быстро передается из рук в руки вниз по электрон-транспортной цепи, на каждом этапе выделяя немного энергии, пока наконец не возвращается на низкий энергетический уровень. Часть энергии, выделяющейся в ходе этих реакций, улавливается и используется для синтеза АТФ. Измученный электрон возвращается в ту же молекулу хлорофилла, с которой он начал путь, и завершает цикл. То есть свет забрасывает электрон на высокий энергетический уровень, после чего этот электрон, постепенно спускаясь обратно на уровень «покоя», выделяет энергию, улавливаемую в виде АТФ, то есть в форме, в которой клетка может ее использовать. Так что перед нами просто электрическая цепь, работающая за счет энергии света.
- Лестница жизни: десять величайших изобретений эволюции - Ник Лэйн - Биология
- Сверкающая бездна. Какие тайны скрывает океан и что угрожает его глубоководным обитателям - Хелен Скейлс - Биология
- Мы – животные: новая история человечества - Мелани Челленджер - Биология / Исторические приключения
- До и после динозавров - Андрей Журавлёв - Биология
- Общий анализ крови. Информационный сборник - О. Татков - Биология