Читать интересную книгу Лестница жизни - Ник Лейн

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 16 17 18 19 20 21 22 23 24 ... 96

Фотосинтез и дыхание противоположны не только как химические процессы, но и как факторы глобального масштаба. Если бы не было дыхания, то есть никакие животные, грибы и бактерии не сжигали бы растительную пищу, то весь углекислый газ был бы давно высосан из атмосферы и преобразован в биомассу. Тогда жизнь остановилась бы, за исключением того немногого, что смогло бы существовать за счет медленного самопроизвольного разложения органики и за счет углекислого газа, выделяемого вулканами. Но ничего подобного не происходит. А происходит вот что: в процессе дыхания все органические вещества, откладываемые растениями, сжигаются. В геологических масштабах времени кажется, что растения исчезают в дыму. Из этого вытекает одно важное следствие. Весь кислород, выделяемый в атмосферу при фотосинтезе, может вновь поглощаться в процессе дыхания. В результате могло бы сложиться вечное, неизменное, ничем не нарушаемое равновесие, которое для любой планеты было бы смерти подобно. Единственный способ, позволяющий планете приобрести кислородную атмосферу, а значит и единственный способ избежать судьбы Марса и не превратиться в пыльную красную пустыню, состоит в том, чтобы сохранять определенную часть растительной биомассы нетронутой, неподвластной стихиям и неуязвимой для хитроумных изобретений жизни, позволяющих разлагать биомассу, добывая из нее энергию. А для этого ее необходимо хоронить.

Именно это и происходит. Откладываемая растительная биомасса хоронится в виде каменного и бурого угля, нефти, природного газа и пыли, образуя породы, спрятанные глубоко в недрах земли. Согласно результатам революционных исследований геохимика Роберта Бернера, работавшего в Йельском университете, в земной коре залегает примерно в 26 тысяч раз больше «мертвого» органического углерода, чем содержится во всем живом в биосфере. Каждый атом углерода есть нечто обратное молекуле атмосферного кислорода. На всякий атом углерода, который мы добываем из-под земли и сжигаем как топливо, из атмосферы выхватывается одна молекула кислорода и превращается снова в углекислый газ, что приводит к серьезным, хотя и непредсказуемым последствиям для климата. К счастью, нам никогда не удастся истощить запасы атмосферного кислорода, сжигая ископаемое топливо, даже если мы вызовем настоящую климатическую катастрофу: подавляющее большинство органического углерода хоронится в виде микроскопического детрита в таких горных породах, как сланцы, сжигать которые в промышленных масштабах невозможно или, по крайней мере, экономически невыгодно. До сих пор, несмотря на все наши попытки сжечь все известные запасы ископаемого топлива, мы снизили концентрацию кислорода в атмосфере лишь на 0,001 %[17].

Но этот огромный запас захороненного органического углерода не формируется постоянно: он откладывался на протяжении прошедших геологических эпох лишь периодически. В норме на Земле сохраняется положение, очень близкое к равновесию, при котором дыхание сводит на нет результаты фотосинтеза (а эрозия сводит на нет результаты отложения органики), так что в общем счете почти никакого захоронения углерода не происходит. Поэтому концентрация кислорода в атмосфере и остается на уровне примерно 21 % уже не один десяток миллионов лет. Но в редких случаях, в геологической древности, дела обстояли совсем по-другому. Наверное, самый впечатляющий пример — это каменноугольный период (карбон), около трехсот миллионов лет назад, когда по воздуху летали стрекозы размером с чайку, а по лесам шныряли многоножки длиною в метр. Эти гиганты были обязаны своим существованием исключительно высокой скорости происходившего в то время отложения углерода (так сформировались огромные запасы каменного угля, благодаря которым период и получил свое название — каменноугольный). За время отложения углерода на дне болот уровень кислорода в атмосфере подскочил до 30 %, давая некоторым существам (а именно животным, поглощающим кислород не путем активной вентиляции легких, а за счет пассивной диффузии в пронизывающих тело трахеях или на поверхности кожи) возможность достигать размеров гораздо больших, чем обычно[18].

Чем была обусловлена беспрецедентная скорость отложения углерода в каменноугольный период? Почти наверняка — целым набором случайных факторов: взаимное расположение континентов, влажный климат, наличие обширных затапливаемых равнин, а также (что, возможно, особенно важно) появление в ходе эволюции лигнина, благодаря чему возникли большие деревья и другие крепкие растения, способные заселять обширные площади суши. Лигнин, который грибам и бактериям трудно разлагать даже сегодня, вскоре после своего появления был, судя по всему, и вовсе никому не по зубам. Поэтому его никто и не разлагал, добывая энергию, и он в огромных количествах оставался нетронутым, в то время как выделенный при его синтезе кислород насыщал атмосферу.

В истории Земли было и два других эпизода, когда сочетание случайных геологических факторов приводило к существенному повышению уровня кислорода в атмосфере. Оба эти эпизода были, возможно, связаны с глобальными оледенениями (предполагаемыми так называемой гипотезой «Земли-снежка»). Первое сильное повышение уровня кислорода в земной атмосфере произошло около 2,2 миллиарда лет назад, сразу вслед за периодом бурных геологических сдвигов и глобального оледенения. Второй период глобального оледенения (примерно с восьмисот до шестисот миллионов лет назад), судя по всему, тоже привел к повышению уровня кислорода. Эти глобальные бедствия, по-видимому, сказывались на равновесии фотосинтеза и дыхания, а также отложения осадочных пород и эрозии. Когда великие ледники таяли и начинали лить дожди, минералы и питательные вещества (железо, нитраты и фосфаты), соскобленные льдом с горных пород, смывались в океан, где вызывали бурное «цветение» водорослей и фотосинтетических бактерий, подобное «цветению воды», к которому сегодня приводит использование удобрений, но, вероятно, гораздо большее по масштабам. Этот смыв должен был не только вызывать «цветение» фотосинтезирующих организмов, но и способствовать их захоронению: пыль, грязь и песок, попадавшие в океан, смешивались с «цветущими» бактериями и оседали на дне, приводя к беспрецедентному отложению углерода. А это, в свою очередь, приводило к тому, что уровень насыщенности атмосферы кислородом в масштабе планеты возрастал всерьез и надолго.

Итак, судя по всему, становление кислородной атмосферы на нашей планете было во многом случайным. Это впечатление лишь усилится, если принять во внимание отсутствие каких-либо изменений на протяжении других, весьма продолжительных периодов. С двух миллиардов примерно до одного миллиарда лет назад (в период, который геологи называют «скучным миллиардом» лет) на Земле, похоже, не произошло почти ничего примечательного. Концентрация кислорода в течение этого периода оставалась постоянной и довольно низкой, как, впрочем, бывало и в другие периоды, длившиеся сотни миллионов лет. Застой был нормой, но эпизоды геологических пертурбаций порой вносили серьезные изменения. Подобные геологические факторы могут работать и на других планетах, но, судя по всему, для совпадения обстоятельств, необходимого для накопления кислорода, требуется движение литосферных плит и вулканическая активность. Предположение, что фотосинтез мог давным-давно возникнуть на Марсе, не выходит за рамки возможного, но эта небольшая планета с ее угасающей вулканической активностью не могла поддерживать геологические потоки, которые позволили бы кислороду накапливаться. Поэтому если фотосинтез и мог на ней возникнуть, впоследствии он должен был повсеместно прекратиться.

Но есть и вторая, еще более важная причина, почему фотосинтез не обязательно должен приводить к формированию на планете кислородной атмосферы. Сам фотосинтез мог вообще не прийти к использованию воды в качестве сырья. Травы, деревья, водоросли — все они фотосинтезируют принципиально одинаково, выделяя кислород. Этот процесс называют кислородным фотосинтезом. Но если мы отступим на несколько шагов назад, к бактериям, то окажется, что есть и другие опции. Некоторые сравнительно примитивные бактерии используют для фотосинтеза не воду, а растворенное железо или сероводород. Если нам кажется, что такое сырье не годится для фотосинтеза, то только оттого, что мы привыкли к своему кислородному миру (продукту кислородного фотосинтеза) настолько, что нам трудно представить себе условия, которые были на Земле в древнейшие времена, когда фотосинтез впервые возник.

Нам также трудно оценить суть парадоксального, но на самом деле простого механизма фотосинтеза. Приведу пример, который, как я подозреваю (возможно, несправедливо), отражает общепринятое понимание фотосинтеза. Это отрывок из очаровательной книги Примо Леви «Периодическая система», опубликованной в 1975 году и объявленной «лучшей научно-популярной книгой всех времен» по результатам голосования, проводившегося в 2006 году среди публики (я тоже принял участие) в лондонском Королевском институте:

1 ... 16 17 18 19 20 21 22 23 24 ... 96
На этом сайте Вы можете читать книги онлайн бесплатно русская версия Лестница жизни - Ник Лейн.

Оставить комментарий