Эта ветвь бета-распада, в которой материнский элемент избавляется от электрона и тем самым сокращает соотношение протонов и нейтронов, перемещает изотоп из положения над границей стабильности вниз и вправо, ближе к ней. Изотопы, расположенные под границей, напротив, движутся вверх и влево, вкатываясь в долину стабильности, – и им, как следствие, требуется противоположный процесс, иногда называемый обратным бета-распадом. Например, 12N, у которого слишком мало нейтронов (соотношение 5:7), может попытаться обрести устойчивость, эффективно преобразив протон в нейтрон: 12N → 12C + e+ + ν, и мы получаем счастливый Углерод с соотношением 6:6 и соблюдением всех законов сохранения (заряд, массовое число, энергия и лептонное число). Так, при помощи бета-распада и обратного бета-распада радиоактивные изотопы на протяжении всей Периодической таблицы переходят в более стабильные формы, а предпочтение варианта зависит от того, на какой стороне долины они находятся.
Третий путь бета-распада – захват электрона – также позволяет получить более устойчивое ядро. Если в облаке, полном электронов, один из них оказывается слишком близко от ядра, его может затянуть внутрь, и тогда протон преобразится в нейтрон, как при обратном бета-распаде, а изотоп переместится ниже границы и станет ближе к стабильному состоянию. Пример, при помощи которого мы сможем это показать, – Бериллий‐7. В его ядре слишком много протонов и недостаточно нейтронов, поэтому оно охотно захватывает пролетающий по орбите электрон: 7Be + + e– → 7Li + ν, после чего резко спускается на одну ступень и создает более удобное соотношение нейтронов и протонов, 4:3.
Гамма-распад
Последний тип «излучения», испускаемого радиоактивными ядрами, – высвобождение гамма-лучей – на самом деле оказывается единственным из трех, который в точности соответствует смыслу слова «излучение», поскольку это просто свет с высокой энергией. Он возникает точно так же, как и в том случае, когда электроны испускают свет с низкой энергией – благодаря переходу из возбужденного состояния в более спокойное. Из главы 4 мы помним о том, что, когда электрон, движущийся по орбите вокруг ядра, поглощает фотон или когда по нему ударяет подлетающая частица, он может вобрать эту энергию и перескочить в возбужденное состояние. По прошествии некоторого времени (в действительности, возможно, довольно краткого) он может вновь соскочить обратно и испустить собственный фотон. В атомном ядре есть аналогичные уровни энергетического возбуждения (см. рис. 6.2), доступ к которым оно может получать либо тогда, когда поглотит фотон с подходящей энергией или претерпит столкновение с пришедшей извне частицей, либо в том случае, если оно подвергнется альфа- или бета-распаду, который оставит ядро в возбужденном состоянии. А поскольку все энергии в ядре в миллионы раз больше тех, благодаря которым электроны удерживаются на своих орбитах, мы и получаем в той части спектра, где располагается гамма-излучение, фотоны не с несколькими электронвольтами (видимый свет), а с миллионами электронвольт (МэВ).
Спонтанное и вынужденное деление
Существует еще одна ярчайшая форма ядерного преобразования, которая сдвигает ядро не на несколько ступеней вверх или вниз в Периодической таблице, а перемещает его поразительно далеко от изначального положения, разрывая надвое или на несколько частей. В естественных условиях этот процесс наблюдается только у изотопов Тория‐232, Урана‐235, Урана‐238, Плутония‐239 и Плутония‐240, и даже в этих случаях он чрезвычайно редок. Например, у 238U он происходит лишь в 0,000054 % случаев, когда схождение в долину стабильности начинается с нормального альфа-распада. Впрочем, такой распад намного более распространен в рукотворных элементах, которые в Периодической таблице находятся выше Плутония. Например, 250Cm, изотоп Кюрия, элемента с атомным номером 96, спонтанно делится примерно в 74 % случаев, предпочитая эту заманчивую альтернативу и альфа- (18 %), и бета-распаду (8 %).
Рис. 6.2. Схематичное представление семи типов ядерного распада: альфа-распад, бета-распад, обратный бета-распад, захват электрона, гамма-распад, вынужденное деление и спонтанное деление. У тяжелых ядер отмечены их атомная масса, атомный номер и химический символ. У легких ядер, вовлеченных в бета-распад, подробно показаны числа протонов и нейтронов. Над каждой проиллюстрированной реакцией приведены уравнения распада
При спонтанном делении ядро никогда не распадается на равные части, однако может порождать самые разные элементы, которые располагаются ближе к середине Периодической таблицы. Кроме того, следует добавить, что некоторые нейтроны часто не могут найти себе приют ни в том ни в другом фрагменте, что приводит к последней из семи форм распада: вынужденному делению. Нейтроны нейтральны, поэтому без проблем проникают в атомное ядро, и когда они оказываются внутри тяжелого нестабильного ядра, может начаться хаос. В большинстве реакций деления, вызванного нейтронами, появляется два больших осколка и несколько нейтронов-скитальцев, хотя иногда, менее чем в 1 % случаев, создается три отдельных фрагмента.
Также реакцию деления может запустить фотон с достаточно высокой энергией, разорвав ядро на части, а еще она может начаться, когда в ядро ударяет частица с высокой энергией, отличная от нейтрона. Но наиболее эффективны именно относительно медленные нейтроны. Поскольку в ходе каждой реакции деления создается, как правило, не один, а несколько нейтронов, эти избыточные нейтроны способны, в свою очередь, запустить новые реакции деления, высвободив еще больше энергии и еще больше нейтронов. Благодаря этому реакция может стать самоподдерживающейся, и если мы возьмем ее под контроль, внимательно отслеживая число созданных нейтронов, то получим атомную электростанцию, способную генерировать электричество, причем объемы топлива при этом составят одну десятимиллионную от тех, какие предполагаются в процессах, подразумевающих химические реакции, – скажем, при сжигании угля, нефти или газа. Но если мы позволим этим реакциям умножаться без ограничений, тогда нас ждет взрыв атомной бомбы, подобной той, что стерла с лица земли Хиросиму.
Как мы уже говорили, ядро Урана при делении (238U или 235U) в большинстве случаев разделяется на две неравные части. Изотопы с меньшей массой сосредоточиваются вокруг атомной массы со значением 95 в пределах от 80 до 110, в то время как часть с большей массой – вокруг массы со значением 135, в диапазоне от 125 до 155 (см. рис. 6.3). Поскольку эти два фрагмента возникают из материнского ядра, богатого нейтронами (например, у 238U соотношение нейтронов и протонов 146:92), у обоих дочерних изотопов оказывается очень много нейтронов и оба они располагаются выше долины стабильности (см. рис. 6.1). Таким образом, продукты реакции деления сами по себе оказываются радиоактивными и, как правило, претерпевают серию бета-распадов, чтобы приблизиться к долине стабильности. Стронций‐90, о котором мы упоминали в главе 5, – это пример радиоактивного продукта деления. Некоторые из этих видов долговечны и создают те самые проблемы с радиоактивными отходами, которые становятся неотъемлемой частью производства ядерной энергии и о которых политикам так трудно рассуждать2.
Другая форма превращения ядра противоположна делению, и именно благодаря ей возникли все элементы, за исключением первозданных Водорода и Гелия: это ядерный синтез. Беседу об этом процессе мы отложим до главы 16, где поговорим о создании самих элементов в ядрах массивных звезд.