Читать интересную книгу Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление - Карлос Мадрид

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 27

* * *

ДИАЛОГ ИЗ ФИЛЬМА «ПАРК ЮРСКОГО ПЕРИОДА»

(РЕЖИССЕР СТИВЕН СПИЛБЕРГ, 1993 ГОД), СНЯТОГО ПО ОДНОИМЕННОМУ РОМАНУ МАЙКЛА КРАЙТОНА

- Тираннозавр не намерен подчиняться правилам и распорядку, он — суть хаоса.

- Я не понимаю, что такое хаос. Что это значит?

- Это непредсказуемость в сложных системах. Проще говоря — эффект бабочки. Бабочка взмахнула крылышком в Пекине, а в Центральном парке полил дождь. Сейчас вы все увидите. Дайте мне этот стакан воды. Машину постоянно качает, но ничего, это просто пример.

Допустим, вам в руку упала капелька воды. Куда она, по-вашему, скатится? К какому пальцу?

- Скажем, к большому.

- Так, хорошо. Не убирайте руку! Не шевелитесь. Я снова капну, в то же самое место. Куда теперь скатится капля?

- Не знаю. Туда же?

- Не туда! Почему? Потому что невидимые глазу колебания, ориентация волосинок на руке, количество крови в венах, микроскопические изъяны кожи, как правило, непостоянны и значительно влияют на результат.

- Как это называется?

- Непредсказуемость. Смотрите. Видите? Я снова прав. Кто мог предположить, что д-р Грант неожиданно выпрыгнет на ходу из машины? И еще один пример. Я остался один и разговариваю с самим собой. Теория хаоса в действии.

* * *

Рождение теории хаоса

Сегодня хаос у всех на устах. О нем сняты такие фильмы, как «Хаос», «Эффект бабочки» и «Парк Юрского периода». Ему посвящены художественные произведения, к примеру «Баталист» испанского писателя Артуро Перес-Реверте, где удачно сделанная фотография полностью меняет жизнь хорватского партизана, рассказы «И грянул гром» Рэя Брэдбери, в котором гибель доисторической бабочки меняет исход президентских выборов в США, или «Крах Баливерны» Дино Буццати, где неудержимое восхождение по отвесной скале получает неожиданную развязку.

Но что такое хаос? В большинстве словарей приводится несколько определений этого понятия. К примеру, в толковых словарях русского языка дается три значения слова «хаос». Первые два отражают изначальный смысл, которым наделялось это слово в Древней Греции, а также его привычное значение.

1. В древнегреческой мифологии и философии — беспорядочная материя, неорганизованная стихия, существовавшая в мировом пространстве до образования известного человеку мира.

2. Полный беспорядок, неразбериха.

Третье определение отражает смысл хаоса в физике и математике.

3. Явление, при котором поведение нелинейной системы выглядит случайным, несмотря на то что оно определяется детерминистическими законами.

В этой книге мы, разумеется, поговорим о хаосе в третьем, последнем значении, а также покажем, как математический хаос находит место в массовом сознании благодаря его использованию в физике, биологии, медицине, нейробиологии и других науках. Множество систем в нашем мире, начиная от человеческого мозга и заканчивая климатом Земли, полны хаоса.

В этой и следующей главах мы расскажем историю математической истории хаоса начиная с эпохи Ньютона, периода научной революции, и заканчивая XXI веком.

Знаковым в развитии теории хаоса стал рубеж XIX и XX веков, когда ряд нерешенных задач небесной механики, связанных с устойчивостью Солнечной системы (столкнется ли Луна с Землей? уничтожит ли удар астероида жизнь на Земле?), был рассмотрен талантливым математиком Анри Пуанкаре принципиально иным образом. И в этой, и в следующей главе мы будем использовать интуитивно понятное определение хаоса, близкое к тому, которое применяется в механике, так как именно в механике впервые были описаны системы, которые мы сегодня называем хаотическими. В третьей главе попытаемся применить более формальный подход и постараемся точнее объяснить, в чем именно заключается упомянутый в предисловии эффект бабочки, уже знакомый нам по литературе и кино.

Но начнем с самого начала. Так называемая теория хаоса родилась усилиями нескольких математиков, заинтересованных в том, чтобы связать динамические системы (системы, эволюционирующие со временем) и геометрию, — в их число входили уже упомянутый Анри Пуанкаре и Стивен Смэйл. Немалый вклад в создание теории хаоса внесли физики, изучавшие столь далекие друг от друга области, как метеорология и астрономия, в частности Эдвард Лоренц и Мишель Эно, а также некоторые биологи, занимавшиеся изучением роста популяций, в частности Роберт Мэй. В этот длинный список также следует включить многих ученых, работавших сразу в нескольких областях, в частности Джеймса Йорка, Давида Рюэля, Митчелла Фейгенбаума, Майкла Барнсли и многих других.

Начнем путь к истокам теории хаоса. Нам предстоит преодолеть три реки, которые впадают в море динамических систем: это механика Ньютона, аналитическая механика Лапласа и, наконец, общая теория, задуманная Пуанкаре, который по праву станет главным героем этой главы.

От Ньютона — к Лейбницу, от Лейбница — к Лапласу

В попытках понять траектории движения планет, которые наблюдал Кеплер в свой телескоп, Ньютон составил математические модели, следуя путем Галилея. Так, Ньютон сформулировал законы, связывавшие физические величины и скорости их изменения, то есть, к примеру, пространство, пройденное телом, и скорость тела или скорость тела и ускорение. Следовательно, физические законы, описывавшие динамические системы, выражались в виде дифференциальных уравнений, в которых дифференциалы служили мерами скорости изменения.

Дифференциальное уравнение — это уравнение, главной неизвестной которого является скорость изменения величины, то есть ее дифференциал или производная. И дифференциал, и производная функции описывают изменение ее значений, то есть показывают, как ведет себя функция: возрастает, убывает или остается неизменной. В наших примерах ускорение описывает изменение скорости движущегося тела, так как представляет собой отношение дифференциалов скорости и времени.

Иными словами, ускорение — это производная скорости по времени. Следовательно, ускорение характеризует изменение скорости с течением времени.

Простые решения дифференциальных уравнений, как и алгебраических, крайне редки. Аналитическая механика, появившаяся позднее, стала шагом вперед по сравнению с механикой Ньютона, поскольку была ближе к анализу, чем к геометрии.

В результате изучение физических явлений стало сводиться к поиску дифференциальных уравнений, описывающих эти явления. После того как Ньютон открыл знаменитое дифференциальное уравнение «сила равна произведению массы на ускорение», описывающее движение систем точек и твердых тел, швейцарский математик Леонард Эйлер (1707–1783) определил систему дифференциальных уравнений, описывающих движение непрерывных сред, например воды, воздуха и других потоков, в которых отсутствует вязкость. Впоследствии физик и математик Жозеф Луи Лагранж (1736–1813) изучил звуковые волны и сформулировал уравнения акустики, а Жан-Батист Жозеф Фурье (1768–1830) рассмотрел потоки распределения тепла и описал их с помощью уравнения. Математический анализ, по мнению Фурье, был так же обширен, как и сама природа.

В XVII–XIX веках физики последовательно расширяли математическую картину мира, предлагая все новые дифференциальные уравнения для изучения самых разных областей, к примеру уравнения Навье — Стокса, описывающие движение вязкой жидкости, или уравнения Максвелла, характеризующие электромагнитное поле. Всю природу — твердые тела, жидкости, звук, тепло, свет, электричество — стало возможно описать с помощью дифференциальных уравнений. Однако найти уравнения, характеризующие то или иное явление природы, и решить их — две принципиально разные задачи.

Существуют два типа дифференциальных уравнений: линейные и нелинейные.

Дифференциальное уравнение называется линейным, если сумма двух его решений также будет его решением. В линейном уравнении ни сама неизвестная функция, ни ее производная не возведены в степень, отличную от нуля или единицы. Линейные дифференциальные уравнения описывают события, в которых действие совокупности причин равно совокупному действию этих причин по отдельности. В нелинейных уравнениях, напротив, подобное соотношение между причинами и следствиями не наблюдается, и совокупность двух причин может привести к неожиданным последствиям. Как вы увидите позднее, нелинейности всегда сопутствует хаос.

* * *

НЬЮТОН И ПЕРВОЕ ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ

Самое знаменитое дифференциальное уравнение, несомненно, принадлежит Ньютону: сила равна произведению массы на ускорение. В виде символов это уравнение записывается так:

F = ma где а = dv/dt — (ускорение есть отношение дифференциалов скорости и времени, то есть производная скорости по времени). Рассмотрим еще два простых примера:

1 2 3 4 5 6 7 8 9 10 ... 27
На этом сайте Вы можете читать книги онлайн бесплатно русская версия Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление - Карлос Мадрид.
Книги, аналогичгные Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление - Карлос Мадрид

Оставить комментарий