Читать интересную книгу Биотехнология: что это такое? - Владимир Вакула

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 11 12 13 14 15 16 17 18 19 ... 66

Но синтез аминокислот происходит в строгой очередности. Метионин будет продуцироваться бактериями только в том случае, если уже завершен процесс образования лизина. «Очередь» треонина — сразу после метионина: изолейцин завершит процесс синтеза, потому что его очередь после образования треонина. Такой порядок обусловлен самой природой, слагаемые процессы не подлежат перестановке.

Ну а если необходимо получить и наработать какую-то одну определенную аминокислоту в нужном количестве?

Тогда надо на последующем этапе заблокировать синтез. Именно такую задачу и поставили себе ученые, решившие «научить» бактериальную палочку сверхсинтезу, усиленной наработке треонина, блокировав его дальнейшее преобразование в изолейцин.

Но одно дело поставить задачу и совсем иное реализовать ее на практике. Чтобы добиться нужного результата, исследователям предстояло ни мало ни много, как переделать тот участок ДНК кишечной палочки, который ответствен за синтез треонина, так называемый оперон.

Потому что именно в нем зашифрован все той же природой код образования ферментов, ускоряющих синтез вышеназванных аминокислот.

Не вдаваясь в подробности большой и сложной работы, осуществленной селекционерами и генетиками, скажу лишь, что делалась она поэтапно. Сначала ученые вызвали направленную мутацию (стойкое изменение) генов, входящих в оперон. Результат не замедлил сказаться измененные клетки, перестав синтезировать изолейцин, начали нарабатывать треонин. Но, увы, в количествах, явно недостаточных. Пришлось в оперон ввести особый ген-стимулятор, активизировавший работу его собственных генов. И дело, как говорится, пошло... Количество треонина, получаемого за один цикл ферментации (биохимической переработки органического сырья с помощью микроорганизмов или ферментов), значительно увеличилось.

И все же о промышленном производстве треонина речь еще идти не могла. Для этого предстояло повысить работоспособность штамма как минимум в 10—45 раз! К счастью, ученые вспомнили о плазмидах— факторах наследственности, расположенных в клетках вне хромосом (в структурных элементах клеточного ядра, содержащих ДНК).

Дело в том, что, проникая в какую-либо клетку, плазмида тотчас начинает воспроизводиться. Известны случаи, когда она образовывала до трех тысяч копий. Вот и в данном случае плазмида, как говорится, не подвела, сделала свое дело. Но сначала микробиологи с помощью специально подобранного фермента (активного белка) «вырезали» из хромосомы штамма кишечной палочки фермент ДНК, содержащий треониновый оперон, и включили его с помощью методов генетической инженерии в плазмиду. А ее ввели в другую бактерию того же штамма. После размножения гибридной плазмиды синтез треонина усилился настолько, что продуктивность полученного штамма вдвое превысила работоспособность уже имеющихся.

Правда, и на этом поиск, направленный на совершенствование штамма, не закончился, ибо еще предстояло научиться использовать для получения треонина какое-нибудь дешевое сырье — скажем, отход производства свекловичного сахара — патоку. Но на ней, к сожалению, кишечная палочка не растет. Вот и пришлось точно такими же методами, какие были использованы ранее, в ее штаммы ввести ген, позволяющий в конечном счете расщеплять сахарозу патоки на глюкозу и фруктозу, прекрасно усваиваемые бактериями. И хотя результаты превзошли самые смелые ожидания, работа над улучшением штамма продолжается и сегодня.

А почему бы и нет? Ведь существуют же гораздо более продуктивные штаммы бактерий, способные за 60—70 часов ферментации производить в литре культуральной жидкости (напомню читателю — среда, в которой в лабораторных и промышленных условиях выращивают бактерии) до 100—120 граммов лизина. Так разве было бы плохо наделить аналогичной результативностью и штамм, продуцирующий треонин?

По-моему, замечательно. От такой эффективности не отказался бы, пожалуй, ни один селекционер, работающий с традиционными сельскохозяйственными культурами. И, кстати, широко использующий при этом методы генетической инженерии и клеточной культуры, а другими словами, все той же биотехнологии с определением «новая».

Однако новое (да еще входящее в жизнь с удивительной скоростью) очень быстро становится не только привычным, но и необходимым, естественным, а значит, его скоро перестают воспринимать как нечто нестандартное, отличающееся от устоявшейся нормы. И это одна из характерных черт данного направления научно-технического прогресса.

И должен сказать, что практическая отдача этой особенности колоссальная. Уже сегодня более двух третей продукции микробиологической промышленности — наиболее развитой области биотехнологии СССР — применяется для интенсификации сельского хозяйства. Объясняется такое приоритетное развитие весьма просто: новые производства, основывающиеся на синтезе микроскопических грибков, дрожжей, бактерий, оказываются намного экономичнее производства тех же веществ (аминокислот, белков, антибиотиков, различного рода кормовых и пищевых добавок, регуляторов и стимуляторов роста сельскохозяйственных животных и растений) химическим путем. А у экономики, как известно, свои законы. Они определяют рентабельность отраслей народного хозяйства.

Все это относится и к биотехнологии как к одному из самых эффективных направлений научно-технического прогресса, бурное развитие которой отвечает мировым тенденциям развития НТР.

Флаг, помидор и гора

И это не слова, не звонкие фразы. Убедиться в этом нетрудно, познакомившись, хотя бы бегло, с состоянием и перспективами биотехнологии в развитых капиталистических странах. Они, как вы сами понимаете, определяются прежде всего тем, что биотехнология, представляя собой синтез биологических знаний и технологического опыта, открывает заманчивые перспективы в получении различных продуктов при помощи микроорганизмов, ферментов и их комплексов, живых клеток. Бурно развиваясь, биотехнология становится сферой национального бизнеса, способной обеспечить наибольшие коммерческие выгоды. А раз так, то на ее развитие не жалеют никаких средств. Впрочем, факты говорят сами за себя.

Государственными организациями Японии совместно с частными компаниями разработана десятилетняя (1981—1990 гг.) программа развития биотехнологии под кодовым названием «Лунный свет». На ее осуществление ассигнуется более 500 миллионов долларов. Программа предполагает прежде всего приоритетное развитие новейшей биотехнологии, в том числе селекции микробных штаммов, методов рекомбинации ДНК (искусственное изменение ДНК), гибридизации клеток, создание промышленной технологии биологических процессов и специальной аппаратуры.

Согласно данным министерства внешней торговли и промышленности (МВТП) Японии более 300 компаний и институтов страны работают над основными проблемами биотехнологии. Государство поощряет и содействует обмену и распространению новых технологических решений среди компаний. Выражается это, в частности, в том, что государственный центр передачи технологии, созданный в 1978 году, закупает у отдельных лиц, промышленных фирм — как в Японии, так и за рубежом — лицензии и патенты на технологические новшества и предлагает их на льготных условиях японским компаниям.

Льготное кредитование и налогообложение ежегодно обновляемых исследовательских тем осуществляет отдел науки и техники МВТП. В частности, фирмам, разрабатывающим или выпускающим новую продукцию, предоставляются налоговые льготы в размере 25 процентов, а по некоторым видам — до половины объема их затрат на исследования и разработки.

Аналогичная картина стимулированного развития биотехнологии наблюдается и в США. Ведущая роль в финансировании программ по биотехнологии здесь принадлежит Национальному научному фонду, который распределяет ассигнования между университетами, институтами, лабораториями. Его расходы составляют многие миллионы долларов. Среди приоритетных программ, финансируемых фондом, программа по биотехнологии ферментов и их использованию в пищевой и текстильной промышленности.

В числе ведомств, финансирующих исследования по биотехнологии, следует отметить НАСА, министерство здравоохранения и социального обеспечения, обороны, внутренних дел, сельского хозяйства, энергетики и другие. Заслуживает внимания программа по биотехнологии ФРГ, на разработку которой уже в 1982—1983 годах федеральное министерство исследований и технологии выделяло около 40 миллионов марок. Здесь предусматривается совершенствование технологии и оборудования для производства ферментов и аминокислот, биогаза, культивирования клеток растений. В ФРГ действует первый в странах ЕЭС биотехнологический институт, с 1975 года финансирующийся правительством, а с начала 70-х годов осуществляются государственные программы по биотехнологии, бюджетные ассигнования на которые постоянно увеличиваются.

1 ... 11 12 13 14 15 16 17 18 19 ... 66
На этом сайте Вы можете читать книги онлайн бесплатно русская версия Биотехнология: что это такое? - Владимир Вакула.

Оставить комментарий