Читать интересную книгу Большая Советская Энциклопедия (СП) - БСЭ БСЭ

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 11 12 13 14 15 16 17 18 19 ... 74

  Спектрографы одновременно регистрируют протяжённые участки спектра, развёрнутого в фокальной плоскости Ф (рис. 3) на фотопластинках или фотоплёнках (фотографические спектрографы), а также на экранах передающих телевизионных трубок, электронно-оптических преобразователей с «запоминанием» изображений и т. п. При хорошей оптике число каналов ограничивается лишь разрешающей способностью (зернистостью) фотоматериалов или числом строк телевизионной развёртки. В видимой области спектра для визуальных методов спектрального анализа широко используются простые спектроскопы и стилоскопы, в которых приёмником является глаз.

  Диапазон длин волн, в котором работают спектрографы, простирается от коротковолновой границы оптического диапазона и постепенно расширяется в ИК-область по мере достижения всё более высокой фоточувствительности слоев и развития методов тепловидения. Типы спектрографов отличаются большим разнообразием — от простейших приборов настольного типа для учебных целей и компактных ракетных и спутниковых бортовых приборов для исследования спектров Солнца, звёзд, планет, туманностей до крупных астроспектрографов, работающих в сочетании с телескопами, и лабораторных 10-метровых вакуумных установок с большими плоскими и вогнутыми дифракционными решётками для исследований тонкой структуры спектров атомов. Линейная дисперсия спектрографов (участок фокальной плоскости Dх, занимаемый интервалом длин волн Dl) может лежать в пределах от 102 до 105 мм/мкм, светосила по освещённости (отношение освещённости в изображении входной щели к яркости источника, освещающего входную щель) — от » 0,5 в светосильных спектрографах до 10-3 и менее в длиннофокусных приборах большой дисперсии.

  Скоростные многоканальные С. п. для исследований спектров быстропротекающих процессов конструируются путём сочетания спектрографа со скоростной кинокамерой (киноспектрографы), введения в схему прибора многогранных вращающихся зеркал для развёртки спектров перпендикулярно направлению дисперсии, применения многоканальной регистрации с многоэлементными приёмниками и т. п. В этой области ещё нет установившейся терминологии; такие С. п. называются хроноспектрографами, спектрохронографами, спектровизорами, скоростными спектрометрами.

  3. Одноканальные С. п. с селективной модуляцией

  В приборах групп 3 и 4 на рис. 2 вместо пространственного разделения длин волн применяют селективную модуляцию (кодирование) l, разделение l в этих приборах переносится из оптической части в электрическую.

  Растровые спектрометры создаются по общей для одноканальных С. п. блок-схеме (рис. 4), но в сканирующем монохроматоре щели заменяются растрами специальной формы (например, гиперболическими; рис. 8). При работе входного растра попеременно в проходящем и отражённом свете возникает амплитудная модуляция излучения той l , для которой изображение входного растра совпадает с выходным растром. В излучении других l в результате угловой дисперсии изображения смещаются и амплитуда модуляции уменынается. Т. о., ширина АФ dl соответствует полупериоду растра. Растровые спектрометры дают по сравнению с щелевыми спектрометрами выигрыш в потоке (примерно в 100 раз при R » 30000), однако их применение ограничено засветкой приёмника потоком немодулированного излучения, а также сложностью изготовления растров и оптической части системы.

  Сисам — спектрометр интерференционный с селективной амплитудной модуляцией — строится на основе двухлучевого интерферометра, в котором концевые зеркала заменены синхронно поворачивающимися дифракционными решётками и введён модулятор по оптической разности хода. В этом случае амплитудная модуляция накладывается только на интервал dlдиф, соответствующий дифракционному пределу в окрестности l, которая удовлетворяет условию максимума дифракции для обеих решёток. Сисам всегда работает на дифракционном пределе: R = Rдиф= l / dlдиф, при этом за счёт увеличения входного отверстия поток в ~ 100 раз больше, чем в классических приборах 1 группы, но оптико-механическая часть весьма сложна в изготовлении и настройке.

  4. Многоканальные С. п. с селективной модуляцией

  Для данной группы С. п. характерна одновременная селективная модуляция (кодирование) дискретного или непрерывного ряда длин волн, воспринимаемых одним фотоэлектрическим приёмником, и последующее декодирование электрических сигналов. Наибольшее распространение получили два типа приборов этой группы.

  В адамар-спектрометрах осуществляется кодирование дискретного ряда l; общая схема подобна приведённой на рис. 4, но сканирование здесь не применяется, щели в монохроматоре заменены на циклически сменяемые многощелевые растры специальной конструкции (маски-матрицы Адамара). Сигналы приёмника декодируются специальным устройством, дающим на выходе дискретный спектр исследуемого излучения, состоящий из ~ 100 точек-отсчётов. Адамар-спектрометры дают выигрыш в потоке и быстродействии и эффективно применяются, например, для экспресс-анализа выхлопных газов двигателей по их ИК-спектрам.

  В фурье-спектрометрах осуществляется непрерывное кодирование длин волн с помощью интерференционной модуляции, возникающей в двухлучевом интерферометре при изменении (сканировании) оптической разности хода. Приёмник излучения на выходе интерферометра даёт во времени сигнал — интерферограмму, которая для получения искомого спектра подвергается Фурье-преобразованию на ЭВМ. Фурье-спектрометры наиболее эффективны для исследований протяжённых спектров слабых излучений в ИК-области, а также для решения задач сверхвысокого разрешения. Конструкции и характеристики приборов этого типа очень разнообразны: от больших уникальных лабораторных установок с оптической разностью хода 2 м (R » 106) до компактных ракетных и спутниковых спектрометров, предназначенных для метеорологических и геофизических исследований, изучения спектров планет и т. д. Для фурье-спектрометров соотношение (1) имеет вид: .

  Отметим ещё раз принципиальное различие рассмотренных групп приборов: в одноканальных приборах 1 и 3 групп время эксперимента затрачивается на накопление информации о новых участках спектра; в приборах 2 группы — на накопление отношения сигнала к шуму, а в приборах 4 группы — на накопление структурных деталей в данном спектральном диапазоне (рис. 9).

  Лит.: Пейсахсон И. В., Оптика спектральных приборов, Л., 1970; Тарасов К. И., Спектральные приборы, Л., 1968; Заидель А. Н., Островская Г. В., Островский Ю. И., Техника и практика спектроскопии, М., 1972; Оптико-механические приборы, М., 1965; Якушенков Ю. Г. , Основы теории и расчета оптико-электронных приборов, М., 1971; Мерц Л., Интегральные преобразования в оптике, пер. с англ., М., 1969; Инфракрасная спектроскопия высокого разрешения. Сб., М., 1972; Кардона М., Модуляционная спектроскопия, пер. с англ., М., 1972.

  В. А. Никитин.

Рис. 7. Вакуумный 24-канальный квантометр (заводское название — фотоэлектрическая установка) ДФС-41 для экспрессного и маркировочного анализа чугунов, простых и среднелегированных сталей на легирующие элементы, металлоиды и вредные примеси, аналитические линии которых расположены в вакуумной УФ-области: 1 — вакуумный полихроматор с вогнутой дифракционной решёткой с фокусным расстоянием, равным 1 м, рабочий диапазон 0,175—0,38 мкм; 2 — генератор искры ИВС-1 для возбуждения эмиссионных линий атомов в пробе; 3 — электронно-регистрирующее устройство ЭРУ-1; 4 — блок цифрового отсчёта. Время анализа 10 элементов около 2 мин.

Рис. 3. Принципиальная оптическая схема спектрального прибора с пространственным разделением длин волн с помощью угловой дисперсии: 1 — коллиматор с входной щелью Щ и объективом O1, фокусное расстояние которого C1; 2 — диспергирующий элемент, обладающий угловой дисперсией Dj/Dl; 3 — фокусирующая система (камера) с объективом O2, создающим в фокальной плоскости Ф изображения входной щели в излучении разных длин волн с линейной дисперсией Dx/Dl. Если в плоскости Ф установлена одна выходная щель, то прибор называется монохроматором, если несколько — полихроматором, если фоточувствительный слой (или глаз) — спектрографом (или спектроскопом).

Рис. 4. Блок-схема однолучевого одноканального спектрального прибора: И — источник излучения; М — оптический модулятор (обтюратор); О — исследуемый образец; Ф — сканирующий фильтр (монохроматор); П — фотоэлектрический приёмник излучения; У — усилитель и преобразователь сигналов приёмника; Р — аналоговый или цифровой регистратор.

1 ... 11 12 13 14 15 16 17 18 19 ... 74
На этом сайте Вы можете читать книги онлайн бесплатно русская версия Большая Советская Энциклопедия (СП) - БСЭ БСЭ.
Книги, аналогичгные Большая Советская Энциклопедия (СП) - БСЭ БСЭ

Оставить комментарий