Шрифт:
Интервал:
Закладка:
Двухлучевые спектрофотометры (сф) В двухлучевых оптических схемах поток от источника разделяется на два пучка — основной и пучок сравнения (референтный). Чаще всего применяется двухлучевая схема «оптического нуля» (рис. 5), представляющая собой систему автоматического регулирования с обратной связью. При равенстве потоков в двух пучках фотометра, попеременно посылаемых модулятором М на входную щель монохроматора Ф, система находится в равновесии, клин К неподвижен. При изменении длины волны пропускание образца меняется и равновесие нарушается — возникает сигнал разбаланса, который усиливается и подаётся на сервомотор, управляющий движением клина и связанным с ним регистратором Р (самописцем). Клин перемещается до тех пор, пока вносимое им ослабление референтного потока не компенсирует ослабления, вносимого образцом О. Диапазон перемещения клина от полного закрытия до полного открытия согласуется со шкалой (от 0 до 100% ) регистратора коэффициента пропускания образца. Обычно СФ записывает спектры на бланках с двумерной шкалой, где абсциссой служат длины волн l или волновые числа n (в cм-1), ординатой — значения коэффициента пропускания Т (в % ) или оптической плотности D = —lgT (здесь 0 £ Т £ 1).
Многочисленные модели СФ, выпускаемые серийно фирмами многих стран, можно разделить на 3 основных класса: сложные универсальные СФ для научных исследований (R = 103—104), приборы среднего класса (R » 103) и простые, «рутинные», СФ (R = 100—300). В СФ 1-го класса предусмотрена автоматическая смена реплик, источников, приёмников, что позволяет охватить широкий спектральный диапазон. Наиболее распространены диапазоны 0,19—3 мкм, 2,5—50 мкм и 20—330 мкм. Конструкции этих СФ обеспечивают широкий выбор значений R, М, Df, скоростей и масштабов регистрации спектров различных объектов. В приборах среднего класса (рис. 6) используемый спектральный диапазон меньше и выбор режимов ограничен. В простых СФ предусматриваются обычно 1—2 стандартных режима с простейшим управлением «пуск — стоп»; это переносные приборы массой 20—40 кг.
Кроме СФ, работающих по схеме «оптического нуля», существуют прецизионные СФ, построенные по схеме «электрические отношения». В них световые пучки двухлучевого фотометра модулируются различными частотами (или фазами) и отношение потоков определяется в электрической части прибора. В конструкции специальных типов СФ вводят микроскопы (микроспектрофотометры), устройства для исследований спектров флуоресценции (спектрофлуориметры), поляризации (спектрополяриметры), дисперсии показателя преломления (спектрорефрактометры), измерений яркости внешних излучателей по сравнению с эталонным (спектрорадиометры). Автоматические СФ являются основынми приборами для исследований спектральных характеристик веществ и материалов и для абсорбционного спектрального анализа в лабораториях.
Однолучевые нерегистрирующие спектрофотометры — обычно простые и относительно дешёвые приборы для области 0,19—1,1 мкм, схема которых аналогична приведённой на рис. 4. Нужная длина волны в них устанавливается вручную; образец и эталон, относительно которого измеряется пропускание или отражение, последовательно вводятся в световой пучок. Отсчёт снимается визуально по стрелочному или цифровому прибору. Для увеличения производительности СФ оснащаются устройствами цифропечати и автоматической подачи образцов.
Спектрометры комбинационного рассеяния могут быть однолучевыми и двухлучевыми. Источником излучения в них обычно служат лазеры, а для наблюдения комбинационных частот (см. Комбинационное рассеяние света) и подавления фона, создаваемого первичным излучением, применяются двойные и тройные монохроматоры, а также голографические дифракционные решётки. Приборы снабжаются устройствами для наблюдения комбинационного рассеяния в жидкостях, кристаллах, порошках под разными углами и «на просвет». В лучших приборах отношение фона к полезному сигналу снижено до 10-15 и комбинационные частоты могут наблюдаться на расстояниях ~ нескольких см-1 от возбуждающей линии.
Скоростные спектрометры (хроноспектрометры) работают по схеме, приведённой на рис. 4, но, в отличие от предыдущих, их снабжают устройствами быстрого циклического сканирования и широкополосными (Df до 107 гц) приёмно-регистрирующими системами. Для исследований кинетики реакций сканирование ведётся с малой скважностью, которая достигается, например, методом «бегущей щели»: вместо выходной щели в фокальной плоскости устанавливается быстро вращающийся диск с большим числом радиальных прорезей. Таким путём получают до 104 спектров в сек. Если время жизни объекта слишком мало для кинетических исследований, применяют более быстрое сканирование вращающимися зеркалами, это приводит к большой скважности и требует синхронизации начала процесса с моментом прохождения спектра по щели. К скоростным спектрометрам относятся спектровизор СПВ-У (регистрирующий до 500 спектров в сек в видимой области) и скоростной ИК-спектрометр ИКСС-1 (ИКС-20) с регулируемым спектральным диапазоном в пределах интервала 1—6 мкм и скоростями записи от 1 до 100 спектров в сек.
2. Многоканальные С. п. с пространственным разделением длин волн
Сканирование в этой группе приборов не применяется, дискретный ряд длин волн (в полихроматорах) или участки непрерывного спектра (в спектрографах) регистрируются одновременно, и оптическая часть строится обычно по схеме, приведённой на рис. 3. Если же вместо системы, создающей угловую дисперсию, применяется набор узкополосных светофильтров, прибор обычно относят к фотометрам.
Многоканальные С. п. широко используются для спектрального анализа состава веществ по выбранным аналитическим длинам волн l. По мере увеличения числа каналов появляется возможность изучения спектральных распределений f(l). Рассмотрим наиболее типичные приборы данной группы (в порядке возрастания числа каналов).
Пламенные (атомно-абсорбционные) спектрофотометры имеют обычно один-два канала регистрации. Они измеряют интенсивности линий абсорбции (эмиссии, флуоресценции) атомов элементов в пламени специальных горелок или других «атомизаторов». В простых конструкциях аналитические l выделяются узкополосными фильтрами (пламенные фотометры), в приборах более высокого класса применяются полихроматоры или монохроматоры, которые можно переключать на различные длины волн. Приборы данного типа используют в спектральном анализе для определения большинства элементов периодической системы. Они обеспечивают высокую избирательность и чувствительность до 10-14 г.
Квантометры — фотоэлектрические установки для промышленного спектрального анализа (рис. 7). Они строятся на основе полихроматоров; выходные щели полихроматора выделяют из спектра излучения исследуемого вещества аналитические линии и линии сравнения, соответствующие потоки посылаются на приёмники (фотоумножители), установленные у каждой щели. Фототоки приёмников заряжают накопительные конденсаторы; величины их зарядов, накопленные за время экспозиции, служат мерой интенсивностей линий, которые пропорциональны концентрациям элементов в пробе. Существующие модели квантометров различаются рабочими диапазонами спектра (внутри области 0,17—1 мкм), числом одновременно работающих каналов (от 2 до 80), степенью автоматизации, способами возбуждения спектров (дуга, искра, лазер). Они применяются для экспрессного анализа химического состава сталей и сплавов в чёрной и цветной металлургии, металлических примесей в отработанных смазочных маслах машин и двигателей для определения степени их износа и в др. задачах.
Спектрографы одновременно регистрируют протяжённые участки спектра, развёрнутого в фокальной плоскости Ф (рис. 3) на фотопластинках или фотоплёнках (фотографические спектрографы), а также на экранах передающих телевизионных трубок, электронно-оптических преобразователей с «запоминанием» изображений и т. п. При хорошей оптике число каналов ограничивается лишь разрешающей способностью (зернистостью) фотоматериалов или числом строк телевизионной развёртки. В видимой области спектра для визуальных методов спектрального анализа широко используются простые спектроскопы и стилоскопы, в которых приёмником является глаз.
- Большая Советская Энциклопедия (ЛЮ) - БСЭ БСЭ - Энциклопедии
- Большая Советская Энциклопедия (ОС) - БСЭ БСЭ - Энциклопедии
- Большая Советская Энциклопедия (ОТ) - БСЭ БСЭ - Энциклопедии
- Большая Советская Энциклопедия (ВТ) - БСЭ БСЭ - Энциклопедии
- Большая Советская Энциклопедия (ФТ) - БСЭ БСЭ - Энциклопедии