Читать интересную книгу 4. Кинетика. Теплота. Звук - Ричард Фейнман

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 8 9 10 11 12 13 14 15 16 ... 37

Между прочим, когда говорят, что средняя кинетическая энергия частицы равна 3/2 kT, то требуют, чтобы этот результат был выведен из кинетической теории, т. е. из законов Ньютона. Мы уже можем получать разные удивительные вещи с помощью кинетической теории, самое интересное — что удается полу­чить так много из столь малого. Конечно, мы не хотим сказать, что законы Ньютона — это «малое», они на самом деле дают все необходимое для решения задачи, просто нам пришлось потрудиться совсем немного. Как же нам удалось так много по­лучить? Просто мы постоянно исходили из очень важного пред­положения, что если заданная система находится при некоторой температуре в тепловом равновесии, то при той же температуре она будет в равновесии с чем угодно. Скажем, нам хочется пос­мотреть, как движется частица, если она сталкивается с водой.

Для этого представим, что, кроме воды и частицы, есть еще и газ, состоящий из частиц еще одного сорта —маленьких дробинок, которые, как мы предполагаем, с водой не взаи­модействуют и только сильно ударяют по нашей частице. Пред­положим, что частица ощетинилась острыми шипами и все дробинки наталкиваются на них. Об этом воображаемом газе из дробинок при температуре Т нам известно все — это иде­альный газ. Вода — дело сложное, а идеальный газ — он попроще. И вот наша частица находится в равновесии с газом из дробинок. Следовательно, среднее движение частицы долж­но быть таким, каким ему следует быть вследствие столкнове­ний с атомами, потому что если бы частица двигалась относи­тельно воды с большей скоростью, чем положено, то дробинки, отняв у частицы часть ее энергии, нагрелись бы больше, чем вода. Но ведь мы начали с равных температур и предполагаем, что если равновесие однажды наступило, то оно таким и ос­танется; не может вдруг одна часть системы нагреться, а дру­гая остыть.

Фиг. 41.1. Чувствитель­ный зеркальный гальва­нометр и образец записи шкалы как функция вре­мени.

Пучок света из источника L отражается от малень­кого зеркальца на шкале.

Это предположение справедливо и его можно доказать, ис­пользуя законы механики, но доказательство очень сложно и понять его можно, только хорошо зная механику. С помощью квантовой механики доказать это гораздо легче, чем с помощью классической. Впервые эту теорему доказал Больцман, а мы, приняв, что она верна, можем утверждать, что если частица сталкивается с воображаемыми дробинками, то ее энергия равна 3/2kT. Но этой же самой энергией она должна обладать, если мы удалим дробинки и оставим частицу наедине с водой при такой же температуре. Это странная, но правильная цепь рассуждений.

Кроме движения коллоидных частиц, на которых и было впервые открыто броуновское движение, имеется еще целый ряд других явлений, и не только в лабораторных, но и в дру­гих условиях, позволяющих обнаружить броуновское движе­ние. Если бы мы смогли соорудить чрезвычайно тонкое измери­тельное устройство, скажем, крохотное зеркальце, прикреплен­ное к тонкой кварцевой нити очень чувствительного баллисти­ческого гальванометра (фиг. 41.1), то зеркальце не стояло бы на месте, а непрерывно плясало бы, поэтому если бы мы осветили это зеркальце лучом света и проследили за отраженным пят­ном, то потеряли бы надежду создать совершенный измеритель­ный инструмент, так как зеркальце все время пляшет. Почему? Потому что средняя кинетическая энергия вращения зеркаль­ца равна ll2kT.

Чему равен средний квадратичный угол качаний зеркаль­ца? Предположим, что мы определили период собственных колебаний зеркальца, стукнув слегка по одной его стороне и наблюдая, как долго будет оно качаться взад и вперед, и пусть нам также известен момент инерции /. Формулу для кинети­ческой энергии вращения мы знаем, это равенство (19.8): Т =1/2Iw2. А потенциальная энергия пропорциональна квад­рату угла отклонения, т. е. V = l/2aq2. Но если мы знаем пе­риод колебаний t0и можем вычислить собственную частоту w0= 2p/t0, то можно и потенциальную энергию записать в виде V=1/2/Iw20q2. Мы знаем, что средняя кинетическая энергия равна l/2 kT', но поскольку перед нами гармонический осцил­лятор, то средняя потенциальная энергия также равна 1/2kT. Следовательно,

Таким образом мы можем рассчитать колебания зеркальца гальванометра и тем самым найти предел точности нашего ин­струмента. Если нам нужно уменьшить колебания, то следует охладить зеркальце. Но здесь возникает интересный вопрос — в каком месте его охладить? Все зависит от того, откуда оно получает больше «пинков». Если в колебаниях повинна кварце­вая нить, то охлаждать нужно ее верхний конец, если же зер­кальце находится в газовой среде и раскачивается в основном за счет соударений с молекулами газа, то лучше охладить газ. Итак, практически, если известно, почему происходит затуха­ние колебаний, то оказывается, что имеется всегда какой-то источник флуктуации; к этому вопросу мы еще вернемся.

Те же флуктуации работают, и довольно удивительным образом, в электрических цепях. Предположим, что мы пост­роили очень чувствительный, точный усилитель для какой-ни­будь определенной частоты и к его входу подключили резо­нансную цепь (фиг. 41.2), настроенную на эту же частоту, наподобие радиоприемника, только получше.

Фиг. 41,2. Резонансная цепь с большим Q.

а — реальная цепь при температуре T; б — искусственная цепь с идеаль­ным (бесшумным) сопротивлением и «генератором шума».

Предположим, что мы захотели как можно точнее изучить флуктуации, для этого мы сняли напряжение, скажем, с индуктивности и подали его на усилитель. Конечно, во всякой цепи такого рода имеются некоторые потери. Это не идеальная резонансная цепь, но все же очень хорошая цепь, и обладает она малым сопротивле­нием (на схеме сопротивление показано, надо только помнить, что оно очень мало). А теперь мы хотим узнать, как велики флуктуации падения напряжения на индуктивности? Ответ: Нам известно, что «кинетическая энергия», запасенная катушкой резонансной цепи, равна 1/2LI2(см. гл. 25). Поэтому среднее значение 1/2 LI2равно 1/2kT, это дает нам среднее квадратич­ное значение тока, а отсюда можно определить и среднее квад­ратичное значение напряжения. Если мы хотим знать падение напряжения на индуктивности, нам пригодится формула , тогда средний квадрат модуля падения напряжения на индуктивности равен <V2L> = L2w20<I2>, a полагая 1/2L<I2> = 1/2kT, получаем

<V2L>=Lw20kT. ... (41.2)

Итак, теперь мы можем рассчитать контур и предсказать, каким в нем будет так называемый шум Джонсона, т. е. шум, свя­занный с тепловыми флуктуациями!

Но откуда же эти флуктуации берутся? А все из-за сопро­тивления, точнее говоря, в результате пляски электронов в сопротивлении. Ведь они находятся в тепловом равновесии с остальным материалом сопротивления, а это приводит к флуктуациям плотности электронов. Таким образом они по­рождают крошечные электрические поля, управляющие резо­нансной цепью.

Инженеры-электрики объясняют все это иначе. Физичес­ки источником шумов служит сопротивление. Однако можно заменить реальную цепь с честным сопротивлением, вызываю­щим шумы, фиктивной цепью, содержащей маленький генератор, который якобы порождает шумы, а сопротивление теперь будет идеальным — оно уже не шумит. Все шумы теперь исходят от фиктивного генератора. Итак, если нам известны харак­теристики шума, порождаемого сопротивлением, и у нас для этого имеется подходящая формула, то можно рассчитать, как цепь реагирует на этот шум. Следовательно, нам нужна формула для шумовых флуктуации. Сопротивление одинаково хорошо порождает шумы всех частот, поскольку оно само от­нюдь не резонатор. Резонансная цепь, конечно, «слышит» лишь часть этого шума вблизи определенной частоты, а в соп­ротивлении заключено много и других частот. Силу генера­тора можно описать таким образом: выделяемая на сопро­тивлении средняя мощность, если оно непосредственно сое­динено с генератором шума, равна <E2>/R, где Е — снимаемое с генератора напряжение. Но теперь мы хотим знать подроб­нее о распределении мощности по частотам. Каждой определен­ной частоте соответствует очень малая мощность. Пусть P(w)dw — мощность, которую генератор посылает сопротивле­нию в интервале частот dw. Тогда можно доказать (мы дока­жем это для другого случая, но математика и там и тут оди­накова), что выделяемая мощность равна

1 ... 8 9 10 11 12 13 14 15 16 ... 37
На этом сайте Вы можете читать книги онлайн бесплатно русская версия 4. Кинетика. Теплота. Звук - Ричард Фейнман.

Оставить комментарий