Шрифт:
Интервал:
Закладка:
Две вселенные на рис. 13.4 подобны двум островам в океане, а гиперпространство — омывающий их океан. Острова не соединяются между собой сушей; точно так же вселенные не соединены друг с другом пространством.
На диаграммах рис. 13.4 изображена последовательная эволюция звезды. Звезда начинает коллапсировать в нашей Вселенной (а). Она превращается в черную дыру, вокруг черной дыры образуется горизонт событий, и коллапс продолжается (б). Вещество в звезде сжимается настолько, что пространство вокруг нее искривляется и замыкается, образуя маленькую закрытую вселенную, напоминающую воздушный шар (в, г); эта новая маленькая вселенная отпочковывается от нашей Вселенной и начинает передвигаться самостоятельно в гиперпространстве. (Нечто похожее может произойти и на острове в океане, если туземцы построят лодку и захотят отправиться в плавание по океану.) Отпочковавшаяся вселенная со звездой внутри движется от нашей большой Вселенной к другой большой вселенной (г, д) (как лодка плывет от одного острова к другому). Маленькая вселенная достигает другой большой вселенной (е) (как лодка, которая пристает к берегу другого острова), расширяется и извергает из себя звезду. Наконец, звезда взрывается в другой вселенной (ж, з).
Я понимаю, что все это звучит как чистая научная фантастика. В свое время черные дыры явились прямым следствием решения Швар-цшильда, полученного для уравнения поля Эйнштейна (глава 3); точно так же предложенный сценарий эволюции — непосредственный вывод из другого решения уравнения Эйнштейна, решения, найденного Гансом Райсснером и Гуннаром Нордстремом в 1916—1918 гг., но не понятого ими до конца. В 1960 г. ученики Уилера, Дитер Брилл и Джон Грейвс, раскрыли физический смысл решения Райсснера—Нордстрема. Вскоре стало ясно, что это решение с небольшими изменениями можно применить для описания коллапсирующей и взрывающейся звезды (рис. 13.4). Такая звезда отличается от звезды Оппенгеймера-Снайдера только одним существенным моментом: она электрически заряжена, и при ее сжатии формируется сильное электрическое поле, которое некоторым образом причастно к взрыву, происходящему со звездой в другой вселенной.
•к 1с 1с
Подведем итог. В 1964 г. конечные стадии эволюции звезды, которая в результате схлопывания превращается в черную дыру, выглядели следующим образом (во многом благодаря стараниям Уилера, который считал эти исследования основным делом своей жизни):
1. Известно решение уравнения Эйнштейна, предложенное Оппенгеймером и Снайдером для звезды идеальной формы (в том числе для идеальной сферы). Из этого решения следует, что в центре черной дыры возникает сингулярность с бесконечно большими приливными силами гравитации. Эта сингулярность захватывает, разрушает и проглатывает абсолютно все, что попадает в черную дыру.
2. Известно также другое решение уравнения Эйнштейна (частный случай решения Райсснера—Нордстрема) для звезды, имеющей не вполне идеальную форму или сферическую форму, но при этом еще электрический заряд. Глубоко внутри черной дыры такая звезда отпочковывается от нашей Вселенной, прикрепляется к другой вселенной (или к отдаленной области нашей собственной Вселенной) и там взрывается.
3. Было далеко не ясно, какое из этих двух решений (а возможно, ни то и ни другое) «устойчиво по отношению к малым, случайным возмущениям» и, следовательно, может иметь место в реальной Вселенной.
4. В то же время Халатников и Лифшиц утверждали, что сингулярности всегда неустойчивы по отношению к малым возмущениям и поэтому они никогда не возникают. Следовательно, сингулярность Оппенгеймера—Снайдера никогда не может возникнуть в нашей реальной Вселенной.
5. По поводу этого утверждения Халатникова и Лифшица среди физиков существовал некий скептицизм, по крайней мере, в Принстоне. Возможно, он был отчасти вызван желанием Уилера, чтобы эти сингулярности существовали в природе, ибо они могли стать вожделенным местом для слияния общей теории относительности и квантовой механики.
1964-й год стал переломным моментом. В этом году Роджер Пенроуз революционизировал математические инструменты, которыми мы с тех пор пользуемся для анализа свойств пространства-времени. Его революция была настолько важной и оказала настолько сильное влияние на поиск «священного Грааля» Уилера, что я отвлекусь от основного повествования и уделю несколько страниц в книге рассказу о Пенроузе и его революции.
Революция ПенроузаРоджер Пенроуз вырос в семье медиков в Британии. Его мать была врачом, отец — знаменитым профессором генетики человека в Лондонском университетском колледже. Родители Роджера хотели, чтобы, по крайней мере, кто-нибудь один из четверых детей пошел по их следам и занялся медицинской карьерой. Старший брат Роджера, Оливер, совершенно не оправдал их надежд, с самого раннего возраста он намеревался заниматься физикой (и на самом деле стал одним из ведущих специалистов в мире по статистической физике, в области изучения статистических свойств большого числа взаимодействующих атомов). Младший брат Роджера, Джонатан, тоже не собирался становиться врачом; единственное, чем он хотел заниматься, — игрой в шахматы (позже он стал чемпионом Британии по шахматам и оставался им семь лет подряд). Младшая сестра, Ширли, была еще слишком молода, когда Роджер выбирал себе карьеру, и не показывала склонности ни к какому конкретному занятию. (Впоследствии именно она стала врачом и порадовала своих родителей.) Становится понятно, почему именно на Роджера родители возлагали основные надежды.
Когда Роджеру было шестнадцать лет, он вместе с другими учениками класса прошел собеседование у директора школы. Нужно было решать, какие предметы выбрать в качестве основных на последние два года, перед тем как поступать в колледж. «Я люблю математику, химию и биологию», — сказал он директору. «Невозможно. Нельзя соединить биологию с математикой. Либо то, либо другое», — заявил директор. Роджеру была более дорога математика. «Хорошо, я займусь математикой, химией и физикой», — сказал он. Когда Роджер пришел в тот вечер домой, его родители были в ярости. Они обвинили сына в том, что он связался с плохой компанией. Биология совершенно необходима для медицины; как он мог от нее отказаться?
Через два года Роджер решил, чем он будет заниматься в колледже. Роджер вспоминает, как он сказал, что хочет поехать в Лондон, поступить в университетский колледж и получить степень по математике. «Мой отец был против. Математика, утверждал он, хороша для тех, кто больше ничего не умеет делать, но карьеры из нее не еде-
Роджер Пенроуз (1964). [Фото сделано Годфри Арджентом для Британской Национальной портретной Галереи и Лондонского Королевского общества. Предоставлено Годфри Арджентом]лаешь». Роджер настаивал на своем, и отец добился, чтобы его протестировал один из преподавателей математики, работавший в колледже. Математик пригласил юношу на собеседование и предупредил его, что, скорее всего, он решит лишь одну или две из предложенных задач. Собеседование должно было продолжаться целый день. Когда же Роджер за несколько часов правильно решил все двенадцать задач, отец сдался. Так Роджер занялся математикой.
Вначале он не собирался применять математический аппарат к физике. Его интересовала чистая математика. Но потом все изменилось.
Соблазн начался в 1952 г., когда Роджер, тогда студент четвертого курса Лондонского университетского колледжа, прослушал курс радиолекций по космологии, которые читал Фред Хойл. Лекции пленили его и побудили обратить внимание на физику, но вместе с тем немного смутили. Кое-что из того, о чем говорил Хойл, просто не могло иметь смысла! Старший брат Роджера, Оливер, изучал физику. Роджер решил навестить своего брата, к которому надо было ехать в Кембридж на поезде. В конце того же дня за обедом в Кингсвудском ресторане Роджер обнаружил, что один из коллег Оливера, Деннис
Сиама, занимается теорией стационарной Вселенной Бонди—Голда-Хойла. Замечательно! Возможно, Сиама поможет Роджеру разрешить его сомнения. «Хойл говорит, что, в согласии со стационарной теорией, удаленные галактики не будут видны в расширяющейся Вселенной; они выйдут за пределы наблюдаемой части нашей Вселенной. Я не понимаю, как это может произойти». Роджер вынул ручку и стал рисовать на салфетке пространственно-временную диаграмму. «Из этой диаграммы следует, что удаляющаяся галактика будет тускнеть и краснеть, но все-таки не исчезнет совершенно. Что в моих рассуждениях неправильно?»
Сиама был поражен. Он никогда прежде не пользовался пространственно-временными диаграммами в такого рода рассуждениях. Пен-роуз оказался прав, а Хойл, очевидно, ошибался. И, что более важно, младший брат Оливера был феноменально способен!
- Неприятности с физикой: взлет теории струн, упадок науки и что за этим следует - Ли Смолин - Физика
- На службе у войны: негласный союз астрофизики и армии - Нил Деграсс Тайсон - Прочая научная литература / Физика
- Неприятности с физикой: взлет теории струн, упадок науки и что за этим следует - Ли Смолин - Физика
- Великий замысел - Стивен Хокинг - Физика
- Астероидно-кометная опасность: вчера, сегодня, завтра - Борис Шустов - Физика