Шрифт:
Интервал:
Закладка:
Если в Солнечной системе вне Земли найдутся доказательства в пользу существования жизни (пусть даже исчезнувшей), то наше понимание ее происхождения подвергнется серьезным изменениям. В том случае, если жизнь в Солнечной системе зарождалась неоднократно, это означает, что в мирах с такими физическими свойствами, как у нас, существует большая вероятность возникновения жизни. А если это предположение истинно, значит, в миллиардах галактик, в каждой из которых миллиарды звездных систем, жизнь должна быть широко распространенным явлением. Более того, исходя из природы естественного отбора, в результате которого появляются организмы со все более сложным поведением (как будет обсуждаться далее в этой и следующей главе), вероятно, что во Вселенной много раз появлялись различные виды. Настолько же высоки шансы того, что большинство из этих гипотетических внеземных разумных видов возникли и вымерли, прежде чем наши предки начали смотреть на звезды, задумываясь, что же это такое. Учитывая огромный возраст Вселенной и сравнительно недавнее появление Homo sapiens (особенно технически адаптированного Homo sapiens sapiens) и принимая все приведенные выше предположения, можно постулировать, что внеземной разум существует, но его наличие на период существования нашего вида не столь вероятно. Если мы вспомним тот факт, что радио было неизвестно людям до конца XIX века (а именно эта технология легла в основу проекта SETI — поиска внеземного разума), то шанс контакта с разумом иных миров представляется минимальным (Chown, 1997). Исходя из исторического опыта человечества в отношении контакта между очень разными по уровню развития культурами, можно заключить, что вероятность встретиться с технологически продвинутым инопланетным видом ничтожно мала.
Начало.Свет, идущий к Земле от дальних звезд и галактик (вне зависимости от их расположения относительно Солнечной системы), имеет характерный красный сдвиг (Barrow, 1994). Такой сдвиг обусловлен доплеровским эффектом — увеличением длины световых волн при быстром удалении источника света от наблюдателя. Интересно, что этот эффект отмечается во всех направлениях, а значит, все дальние объекты движутся от Солнечной системы. Однако так происходит отнюдь не потому, что Земля — центр Вселенной. Скорее, ситуацию можно описать при помощи сравнения с воздушным шариком, раскрашенным «в горошек». По мере надувания шарика расстояние между горошинами увеличивается. Вселенная расширяется, и это происходит уже долгое время. Космологи считают, что Вселенная образовалась в течение одной минуты 10–20 миллиардов лет назад. Она «вылетела во все стороны» из одной точки, где материя находилась в состоянии невообразимой концентрации. Это событие называют Большим Взрывом.
Решающим доказательством в пользу теории Большого Взрыва стало существование фоновой космической радиации, так называемого реликтового излучения. Эта радиация — остаточный признак энергии, выделившейся в начале взрыва. Реликтовое излучение было предсказано в 1948 году и экспериментально зафиксировано в 1965-м. Оно является микроволновым излучением, которое можно определить в любой точке космоса, и создает фон для всех прочих радиоволн. Излучение имеет температуру 2,7 градуса по Кельвину (Taubes, 1997). Вездесущность этой остаточной энергии подтверждает не только факт возникновения (а не вечного существования) Вселенной, но и то, что ее рождение было взрывоподобно.
Если мы предположим, что Большой Взрыв произошел 13500 миллионов лет назад (что подтверждается несколькими фактами), то первые галактики возникли из гигантских газовых скоплений около 12500 миллионов лет назад (Calder, 1983). Звезды этих галактик были микроскопическими скоплениями сильно сжатого газа. Сильное гравитационное давление в их ядрах инициировало реакции термоядерного синтеза, превращающие водород в гелий с побочным излучением энергии (Davies, 1994). По мере старения звезд атомная масса элементов внутри них возрастала. Фактически, все элементы тяжелее водорода являются продуктами существования звезд. В раскаленной топке звездного ядра образовывались все более и более тяжелые элементы. Именно таким путем появились железо и элементы с меньшей атомной массой. Когда ранние звезды израсходовали свое «топливо», то более не могли противостоять силам гравитации. Звезды сжались, а затем взорвались сверхновыми. Во время взрыва сверхновых появились элементы с атомной массой больше, чем у железа. Неоднородный внутризвездный газ, оставшийся после ранних звезд, стал строительным материалом, из которого могли сформироваться новые солнечные системы. Скопления этого газа и пыли частично формировались в результате взаимного притяжения частиц. Если масса газового облака достигала определенного критического предела, гравитационное давление запускало процесс ядерного синтеза и из остатков старой звезды рождалась новая.
Наше Солнце зажглось около 4550 миллионов лет назад (Calder, 1989). Вначале оно было окружено кольцами газа и пыли, которые за счет столкновений и гравитационного притяжения коагулировали в планеты. Излучение Солнца отбросило легкие газы из внутренних газовых колец, и из оставшейся смеси тяжелых элементов сформировались каменистые планеты — Меркурий, Венера, Земля и Марс. В течение десятков миллионов лет космические столкновения продолжали наращивать массу небесных тел Солнечной системы. Около 4500 миллионов лет назад Земля столкнулась с объектом, по размерам сопоставимым с Марсом. Материал, выброшенный на орбиту в результате этого жестокого столкновения, стал основой для Луны. Столкновения продолжаются и по сей день, хотя их мощность и частота со временем снизились. «Рекорды» таких столкновений записаны на покрытой кратерами поверхности Луны. Активная геология Земли и слой атмосферы создают защиту от бомбардировки из космоса и затушевывают ее результаты. Химическая смесь веществ, получившихся в результате вулканической активности и упавших с неба (в виде комет и метеоров), стала причиной интересных явлений на новорожденной Земле.
Активная химическая среда молодой Земли была бы смертельно ядовита для любой из ныне существующих форм жизни (Calder, 1983). Атмосфера состояла из метана, аммиака и водяного пара при практически полном отсутствии свободного кислорода. Вулканы постоянно выбрасывали на поверхность Земли едкие соединения (Dawkins, 1989).
Стабильные молекулярные соединения сохранялись, а нестабильные — исчезали (Dawkins, 1989). Цепи молекул, способных к удвоению (репликации), стали встречаться чаще тех, которые не имели таких свойств. Цепи, способные удваиваться быстро и с хорошей точностью, преобладали над теми, которые удваивались медленнее и с «ошибками». Среди всех элементов, рожденных звездами, наибольшими возможностями формирования сложных и замысловатых молекул обладает углерод. В 1950-х годах Миллер и Арей продемонстрировали, что органические вещества, из которых состоят живые существа, с большой вероятностью могли возникать при том типе атмосферы, которая существовала на Земле четыре с лишним миллиарда лет назад. Источниками энергии в этих и более поздних экспериментах были электричество и ультрафиолетовое излучение, моделировавшие грозы и солнечную радиацию на ранней, еще безжизненной Земле. Однако хотя в лабораторных экспериментах, имитировавших условия тогдашней Земли, удалось получить все типы нуклеиновых оснований для ДНК и РНК, ни в одном эксперименте не произошло объединения этих компонентов в высокоорганизованные, сложные молекулы, способные нести информацию о синтезе белка. Несмотря на неудачи биохимиков в попытках создания простейших форм жизни в лабораторных условиях, большинство ученых согласны с тем, что, учитывая химически активную среду новорожденной Земли и повторявшийся бессчетное число раз естественный отбор, возникновение живого из неживого — закономерное и вполне вероятное явление.
Жизнь существует на Земле, по меньшей мере, 4 миллиарда лет. В скалах, имеющих возраст около 3800 миллионов лет, найдены древние бактерии (Calder, 1983). 3500 миллионов лет назад фотосинтетические бактерии сформировали на отмелях колонии, называемые «строматолитами». У этих организмов развилась способность использовать солнечный свет для превращения двуокиси углерода (углекислого газа) и воды в энергию химических связей с выделением кислорода как побочного продукта реакции. По мере распространения таких фотосинтезирующих организмов в течение сотен миллионов лет содержание кислорода в атмосфере постепенно повышалось. Для анаэробных бактерий, на тот момент основной жизненной формы на Земле, кислород был смертельно ядовит. И бактерии либо скрывались в недоступных для воздуха местах, либо подверглись радикальным адаптивным изменениям. В настоящее время анаэробные формы жизни все еще существуют. Они обитают глубоко в почве и в других местах, куда не проникает атмосферный воздух. Но основная часть живых организмов Земли (включая людей) ведут свое происхождение от организмов, адаптировавшихся к атмосфере, богатой кислородом. Предки эукариот (клеток с ядерной мембраной) решили проблему с кислородом наиболее рациональным с эволюционной точки зрения путем (Kimble, 1994). У них не произошло изменения собственной физиологии. Вместо этого они вступили в симбиотические отношения со значительно более мелкими бактериями, у которых уже существовали биохимические механизмы метаболизма кислорода. От этих утилизирующих кислород бактерий произошли митохондрии, которые обитают в наших клетках. Митохондрии сохранили независимость размножения от вмещающих их клеток, несмотря на 1800 миллионов лет совместной эволюции. Функция этих удачно интегрированных органелл — утилизация кислорода с целью получения энергии. Митохондрии жизненно важны для функционирования эукариотических клеток.
- Как живые: Двуногие змеи, акулы-зомби и другие исчезнувшие животные - Андрей Юрьевич Журавлёв - Биология / Прочая научная литература
- Сверкающая бездна. Какие тайны скрывает океан и что угрожает его глубоководным обитателям - Хелен Скейлс - Биология
- Мы – животные: новая история человечества - Мелани Челленджер - Биология / Исторические приключения
- История Земли. От звездной пыли – к живой планете. Первые 4 500 000 000 лет - Роберт Хейзен - Биология
- Как использовать возможности мозга. Знания, которые не займут много места - Коллектив авторов - Биология / Медицина