Читать интересную книгу Характер физических законов - Ричард Фейнман

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 5 6 7 8 9 10 11 12 13 ... 39

Как видите, этот закон отличается от предыдущего, ибо он говорит нам, что происходит в некоторой точке, если известно, что происходит рядом с ней. Ньютонова же формулировка позволяет сказать, что происходит в данный момент времени, если мы знаем, что происходит в предыдущий момент. Во времени она переводит нас плавно от момента к моменту, но в пространстве заставляет скакать из одного места в другое. Вторая формулировка локальна и во времени, и в пространстве, потому что она говорит о соседних точках. Но в математическом смысле обе формулировки эквивалентны.

Существует еще и третья формулировка, основанная на качественно иных понятиях. Если вам не нравится действие на расстоянии, то я показал вам, как можно без него обойтись. Теперь я дам вам формулировку, которая в философском смысле прямо противоположна предыдущей. Тут нам не нужно переходить от момента к моменту, от точки к точке; мы опишем все сразу, целиком. Пусть у нас имеется несколько частиц и вы желаете знать, как одна из них перемещается из одного места в другое. Вообразим все возможные пути перехода из одного места в другое за данный отрезок времени (рис. 17). Скажем, частица должна перейти из точки X в точку Y за час и вы желаете знать, по какому пути она может двигаться. Вы воображаете всевозможные кривые и для каждой кривой подсчитываете определенную величину. (Я не хочу рассказывать, какая это величина, но для тех, кто о ней наслышан, напомню, что для каждого пути она равна среднему значению разности между кинетической и потенциальной энергией.) Если вы подсчитаете эту величину для одного пути, а затем для другого, то для разных путей получите разные числа. Но один из путей дает наименьшее возможное число – именно этим путем и воспользуется на самом деле частица! Теперь мы описываем действительное движение, эллипс, высказывая нечто о кривой в целом. Нам не нужно думать о причинности, о том, что частица чувствует притяжение и движется в согласии с ним. Вместо этого мы говорим, что она разом «обнюхивает» все кривые, все возможные пути и решает, какой выбрать. (Выбирает тот, для которого наша величина – минимальная.)

Рис. 17

Вот вам пример, сколько прекрасных способов существует для описания Природы. Если нам говорят, что в Природе должна господствовать причинность, вы можете взять ньютонову формулировку; если настаивают, что Природа должна обладать свойствами локальности, – к вашим услугам вторая формулировка; если же вас убедили, что Природу нужно описывать при помощи принципа минимума, – берите третью. Какая же из них правильна? Если они математически неравнозначны, если из них вытекают разные следствия, то нам остается лишь выяснить на эксперименте, как именно поступает Природа. К нам могут подойти люди и завести философский спор, что одна им нравится больше, чем другая; но опыт научил нас, что в предсказании поступков Природы философские предчувствия не оправдываются. Мы просто должны представить себе все возможности и затем все их перепробовать. Но в том случае, о котором мы сейчас говорили, все теории совершенно эквивалентны. С точки зрения математической все эти три формулировки – ньютонова, локальная полевая и принцип минимума – приводят к совершенно одинаковым последствиям. Что же тогда делать? Вы прочтете в любой книге, что мы не имеем права отдать научное предпочтение одной из них. И это правда. В научном смысле они эквивалентны. Нет такого опыта, который позволил бы нам сделать этот выбор, потому что все следствия одинаковы. Но психологически они различны. Во-первых, они могут нравиться или не нравиться в философском плане; эту болезнь можно вылечить только тренировкой. Во-вторых, психологическое различие между ними становится особенно важным, когда вы отправляетесь на поиски новых законов.

Пока физика неполна и мы пытаемся открыть новые законы, различные возможные формулировки могут послужить путеводными нитями к пониманию того, что произойдет при других обстоятельствах. В этом случае они психологически неравноценны, ибо толкают нас на разные догадки относительно того, как может выглядеть закон в более общей ситуации. Например, Эйнштейн понял, что электрические сигналы не могут распространяться быстрее света. Он догадался, что это общий принцип. (Подобной игрой в догадки занимались и мы, когда брали закон сохранения момента количества движения и переносили его с одного частного случая, для которого он доказан, на все явления природы.) Эйнштейн догадался, что это общее свойство природы, и в том числе гравитации. Если сигналы не могут распространяться быстрее света, то формулировка, подразумевающая мгновенные взаимодействия, очень плоха. Поэтому в обобщенной теории гравитации, созданной Эйнштейном, метод Ньютона безнадежно слаб и чудовищно сложен, тогда как метод полей и принцип минимума точны и просты. Какой из двух предпочесть – мы до сих пор не решили.

На самом деле оказывается, что в квантовой механике ни один из них не точен в том виде, в каком я их сформулировал, а сам факт существования принципа минимума является следствием того, что в микромире частицы подчиняются квантовой механике. Сейчас наилучшим законом нам представляется комбинация принципа минимума и локальных законов. Сегодня мы думаем, что законы физики должны иметь локальный характер и в то же время сочетаться с принципом минимума, но наверняка мы этого не знаем. Если в системе знаний таится какая-то погрешность, но построена система на удачных аксиомах, то впоследствии вы обнаружите, что неверна лишь одна из них, а остальные справедливы; в этом случае потребуются лишь незначительные переделки. Но если вы строили систему на других аксиомах, то она может вся развалиться из-за того, что целиком опирается на одну-единственную слабую деталь. Мы не можем сказать заранее, не прибегая к интуиции, как лучше всего строить систему, чтобы прийти к новому закону. Мы постоянно должны иметь в виду все возможные способы описания; поэтому физики занимаются вавилонской математикой и уделяют мало внимания аксиоматическому построению своей науки.

Одна из поразительных особенностей природы – многообразие возможных схем ее истолкования. Это обусловлено самим характером наших законов, тонких и четких. Например, свойство локальности существует только потому, что сила обратно пропорциональна квадрату расстояния. Если бы там стоял куб, мы не имели бы локального метода. С другой стороны, тот факт, что сила связана с быстротой изменения скорости, позволяет записывать законы, пользуясь принципом минимума. Если бы сила, например, была пропорциональна самой скорости перемещения, а не ускорению, то это было бы невозможно. Стоит сильно изменить законы, и вы обнаружите, что число возможных формулировок сократилось. Мне это всегда представлялось загадкой. Я не понимаю, почему правильные законы физики допускают такое огромное количество разных формулировок. Они похожи на крокетный шар, который проходит сразу через несколько ворот.

Наконец, я хотел бы сделать несколько более общих замечаний о связи математики с физикой. Математики имеют дело только со структурой рассуждений, и им, в сущности, безразлично, о чем они говорят. Им даже не нужно знать, о чем они говорят, или, как они сами выражаются, истинны ли их утверждения. Объясню почему. Вы формулируете аксиомы: «То-то и то-то обстоит так, а то-то и то-то обстоит так». Что дальше? Дальше можно заниматься логикой, не зная, что означают слова «то-то и то-то». Если аксиомы полны и сформулированы точно, то человеку, строящему доказательство, необязательно понимать значение слов, для того чтобы получить новый вывод на языке, которым он пользуется. Если в одной из аксиом стоит слово «треугольник», то в выводах математика будут какие-то утверждения относительно треугольников, однако при получении этих выводов он не обязан знать, что за вещь – треугольник. Я же могу вернуться к началу его рассуждений и сказать: «Треугольник – это фигура с тремя сторонами, которая представляет собой то-то и то-то». И тогда я пойму его новые выводы. Другими словами, математик готовит абстрактные доказательства, которыми вы можете воспользоваться, приписав реальному миру некоторый набор аксиом. Физик же не должен забывать о значении своих фраз. Это очень важная обязанность, которой склонны пренебрегать люди, пришедшие в физику из математики. Физика – не математика, а математика – не физика. Одна помогает другой. Но в физике вы должны понимать связь слов с реальным миром. Получив какие-то выводы, вы должны их перевести на родной язык и на язык природы – в медные кубики и стеклянные шарики, с которыми вы будете экспериментировать. Только так вы сможете проверить истинность своих выводов. В математике этой проблемы не существует вовсе.

Вполне понятно, что доказательства и способы мышления, найденные математиками, становятся для физиков могучими и полезными орудиями. Но и рассуждения физиков часто приносят пользу математикам.

1 ... 5 6 7 8 9 10 11 12 13 ... 39
На этом сайте Вы можете читать книги онлайн бесплатно русская версия Характер физических законов - Ричард Фейнман.
Книги, аналогичгные Характер физических законов - Ричард Фейнман

Оставить комментарий