Читать интересную книгу Курс общей астрономии - неизвестен Автор

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 76 77 78 79 80 81 82 83 84 ... 109

§ 89. Задачи фундаментальной астрометрии

Фундаментальная астрометрия - учение об инерциальных системах отсчета в астрономии, т.е. о системах, обладающих только прямолинейным и равномерным движением без вращения. Основу для создания таких систем дает нам построение на небесной сфере системы координат и собственных движений звезд и установление системы фундаментальных постоянных астрономии - величин, позволяющих учитывать закономерные изменения координат со временем. Отсюда следуют две основные задачи фундаментальной астрометрии: 1) определение координат и собственных движений звезд; 2) определение числовых значений фундаментальных астрономических постоянных. Принципы определения некоторых основных постоянных астрономии (прецессии, нутации, аберрации, параллакса Солнца) ясны из описания этих явлений, данных ранее в соответствующих параграфах. Поэтому в следующих параграфах мы ограничимся рассмотрением лишь первой задачи - определением координат и собственных движений звезд, без которых невозможно определение и фундаментальных постоянных. Фундаментальная система координат в настоящее время задается прямыми восхождениями и склонениями некоторого числа звезд, расположенных по всему небу. Для ее создания в принципе достаточно было бы определить координаты и собственные движения сравнительно небольшого числа звезд. Но прямые восхождения и склонения по возможности большего числа звезд совершенно необходимо знать также и при решении задач практической, звездной астрономии и других разделов науки о небесных телах. В настоящее время прямые восхождения и склонения известны для многих сотен тысяч звезд. Несмотря на это, задача определения экваториальных координат звезд до сих пор не потеряла своей актуальности и, вероятно, никогда ее не потеряет. Дело в том, что для огромного большинства звезд известны лишь приближенные координаты и для их уточнения необходимы повторные наблюдения этих звезд. Неоднократные определения координат одних и тех же звезд необходимы также и для определения их собственных движений (см. § 91) и для уточнения числовых значений астрономических постоянных. Основные идеи и принципы определения экваториальных координат светил кратко излагаются в следующем параграфе.

§ 90. Абсолютные и относительные методы определения экваториальных координат (a и d )

Экваториальные координаты светил могут быть определены либо абсолютным методом, либо относительным пли дифференциальным методом. Определение координат абсолютным методом не опирается на какие-либо заранее известные координаты. При дифференциальном же методе прямые восхождения и склонения нескольких десятков или сотен звезд должны быть заранее известны. Эти звезды называются опорными. а) Абсолютные методы. Определение склонений звезд абсолютным методом основано на соображениях и формулах § 14. Действительно, если измерить зенитное расстояние незаходящсй звезды сначала в момент ее верхней кульминации (zB ), о затем, через 12 часов звездного времени, в момент ее нижней кульминации (zH ), то будем иметь (см. формулы § 14) zB = d - j и zH = 180° - j - d , откуда

Таким образом, не зная координат других светил, мы получим склонение d данной звезды и географическую широту j места наблюдения. После того как широта места j будет многократно определена из наблюдений нескольких незаходящих звезд, взяв среднее арифметическое ее значение j 0 и измерив зенитное расстояние уже любой звезды в момент кульминации, получим склонение звезды по одной из следующих формул: d = j 0 - z, если звезда кульминировала к югу от зенита; d = j 0 + z, eсли звезда кульминировала к северу от зенита; d = 180 ° - j - z, если звезда наблюдалась в нижней кульминации. Абсолютный метол определения прямых восхождений основан на том соображении, что из наблюдений Солнца можно найти его прямое восхождение a ¤, не зная прямых восхождений других светил. Действительно, пусть на рис. 67 QQ' - небесный экватор, EE' - эклиптика, A точка весеннего равноденствия, e - наклонение небесного экватора к эклиптике, а С - положение Солнца на эклиптике в некоторый момент. Тогда дуга Cm - склонение d ¤ Солнца, а дуга Am - его прямое восхождение a ¤.

Из прямоугольного треугольника СmA, согласно формуле (1.35), следует:

(6.13)

Следовательно, если известно склонение Солнца d ¤ в некоторый момент и угол e, то по формуле (6.13) можно вычислить прямое восхождение Солнца для этого же момента. Измеряя зенитное расстояние z¤ Солнца в момент его верхней кульминации, т. е. в истинный полдень, мы для каждого дня наблюдений можем знать его склонение d ¤. Склонение Солнца меняется с каждым днем (см. § 16). Из наблюдений, произведенных около дней летнего и зимнего солнцестояний, можно определить его экстремальные значения, абсолютная величина которых и будет как раз равна углу наклона е эклиптики к экватору. С полученным значением e по формуле (6.13) можно вычислить a ¤ в момент истинного полудня для каждого дня наблюдений. Кроме того, если при измерении зенитного расстояния отмечать по часам момент T¤ прохождения Солнца через меридиан, то из уравнения

s = a ¤= T’¤ + u(6.14)

будет известна также поправка часов и для каждого дня наблюдений и ход часов w (см. § 85). Таким образом, абсолютный метод определения прямых восхождений сводится к следующему. Выбирается несколько (например, 30-40) звезд, расположенных более или менее равномерно вдоль эклиптики и небесного экватора, настолько ярких, чтобы каждую из них можно было бы наблюдать и днем, до или после наблюдений Солнца. Такие звезды называются главными или часовыми. При наблюдении часовых звезд отмечаются моменты их прохождения через меридиан Т’1 , Т’2 , ..., Т’n . При наблюдении Солнца отмечается момент T’¤ его прохождения через меридиан и измеряется зенитное расстояние z¤. По измеренному зенитному расстоянию Солнца вычисляется его склонение d ¤ и прямое восхождение сто для каждого дня наблюдений в моменты его верхней кульминации. По уравнению (6.14) вычисляются поправки часов на моменты наблюдений Солнца, а по ним - ход часов. Далее, для каждого дня наблюдений Солнца и часовых звезд составляются следующие уравнения:

a ¤ = T '¤ + u.

(6.15)

a 1 = T '1 + u1,

a 2 = T '2 + и2 ,

……………..

a n = T’n + un.

В первом из этих уравнений известны все величины, в остальных - только моменты прохождений звезд через меридиан T 'i . Прямые восхождения часовых звезд a i , и поправки часов и, пока не известны. Но поправки часов u i , для моментов кульминации каждой часовой звезды легко найти через известные поправку и и ход часов w, а именно: u i = u + w (T’ i - T’¤) . Тогда уравнения (6.15) запишутся так:

a¤ = T’¤ + u,

a 1 = T '1 + u + w (T '1 - T'¤),

a 2 = T '2 + u + w ( T '2 - T'¤),

…………………………….

a n = T’n + u + w (T ’n - T’¤)

Из этих уравнений и определяются прямые восхождения Солнца и часовых звезд абсолютным методом. При этом выгоднее производить такие определения по наблюдениям, проведенным при небольших значениях абсолютной величины склонения Солнца, т.е. около дней весеннего и осеннего равноденствий. В этом случае прямые восхождения получаются точнее. При абсолютном методе определения прямых восхождений звезд наблюдения Солнца необходимы для фиксации положения точки весеннего равноденствия на небе относительно этих звезд. С этой целью вместо Солнца можно наблюдать любую планету Солнечной системы, если элементы ее орбиты известны с достаточной степенью точности. Наблюдения планет точнее, чем наблюдения Солнца. Особенно выгодны в этом отношении малые планеты. Условия наблюдений малых планет практически не отличаются от условий наблюдения звезд и поэтому результаты их наблюдений свободны от тех специфических ошибок, которые присущи наблюдениям больших планет и Солнца. б) Относительные или дифференциальные методы. Относительные определения координат звезд сводятся к измерению разностей координат Da и Dd определяемых и опорных звезд. Из наблюдений звезд в меридиане получают для каждой опорной и для каждой определяемой звезды моменты прохождения через меридиан T и Ti, и зенитные расстояния z и zi. Так как наблюдения производятся в меридиане, то разность моментов прохождений звезд, опорной (T) и определяемой (Ti ), после учета хода часов есть разность их прямых восхождений, т.е. Т - Ti = a - a i, = Da i, а разность зенитных расстояний есть разность склонений этих звезд, т.е. z - zi = d i - d = Dd i (кульминация к югу от зенита), г - zi = d - d i = Dd i (кульминация к северу от зенита). Из этих соотношений легко получаются искомые координаты a i и d i, определяемой звезды, так как a и d опорной звезды известны. Здесь мы изложили только принципы определения экваториальных координат; на практике дело обстоит значительно сложнее.

§ 91. Собственные движения звезд

1 ... 76 77 78 79 80 81 82 83 84 ... 109
На этом сайте Вы можете читать книги онлайн бесплатно русская версия Курс общей астрономии - неизвестен Автор.
Книги, аналогичгные Курс общей астрономии - неизвестен Автор

Оставить комментарий